Hall Ticket Number :

R-19

Code: 19A411T

| B.Tech. I Semester Supplementary Examinations November 2023

Essentials of Electrical \& Electronics Engineering

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. What are the types of resistors? Explain any three with neat diagrams.

OR

2. Explain the following with neat diagrams
a) Fixed value resistors
b) Fixed value capacitors

UNIT-II

3. a) State and explain super position theorem.
b) Find current through 2 resistor using super position theorem for the circuit given below.

8M CO2 L3
OR
4. a) State and explain Kirchhoff's laws.
b) State and explain maximum power transfer theorem.
$7 \mathrm{M} \mathrm{CO2}$ L2

UNIT-III
5. a) Explain the operation of Zener diode in forward biased mode

8M CO3 L2
b) If the forward voltage applied to a silicon diode at $30^{\circ} \mathrm{C}$ is 0.8 V . Find the value of the forward current, if the reverse saturation current is $50 n A$. take $\eta=2$.
$6 \mathrm{M} \mathrm{CO3}$ L3
OR
6. Explain the Extrinsic Semiconductors and Intrinsic Semiconductors with neat sketch and compare them.

14M CO3 L2

UNIT-IV

7. Explain the principle and operation of π section filter with bridge rectifier and also derive an expression for its ripple factor

14M CO4 L2

OR

8. With neat waveforms explain the Full wave Rectifier with RC filter and also derive an expression for its ripple factor.

14M CO4 L3

UNIT-V

9. a) With neat diagram explain the various current components of NPN transistor.
b) Derive the relation between α, β and

8M CO5 L2
$6 \mathrm{M} \mathrm{CO5}$ L3

OR

10. With neat sketch explain the construction and operation of PNP and NPN transistors.
| B.Tech. I Semester Supplementary Examinations November 2023

Engineering Graphics \& Design

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. The major and minor axes of an ellipse are 120 mm and 80 mm . Draw an ellipse by Concentric Circles method

OR

2. Construct a regular Hexagon by General Method, given the length of its side is 50 mm

UNIT-II

3. Draw a hypocycloid of a circle of 40 mm diameter, which rolls inside another circle of 160 mm diameter, for one revolution counter clockwise. Draw a tangent \& a normal to it at a point 65 mm from the centre of the directing circle

OR

4. A circle of diameter 30 mm rolls on a flat surface without slipping. Trace the path of a point lying on its circumference for one \& a half revolution of the circle.

UNIT-III

5. A point is 50 mm from both the reference planes. Draw its projections in all possible positions

OR

6. A line $A B, 50 \mathrm{~mm}$ long, has its end $A 20 \mathrm{~mm}$ above the $\mathrm{H} . \mathrm{P}$ and 30 mm below the V.P. the line is inclined at 30° to the H.P and at 45° to the V.P. Draw the projections

14M CO3

UNIT-IV

7. A square $A B C D$ of 40 mm side has a corner on the HP and 20 mm in front of the VP. All the sides of the squares are equally inclined to the HP and parallel to the VP. Draw its projections

OR

8. A thin rectangular plate of sides of $60 \mathrm{~mm} \times 30 \mathrm{~mm}$ has its shortest side in the VP and inclined at 30° to the HP. Project its top view if its front view is a square of 30 mm long sides

UNIT-V

9. Draw the projections of a cone, base 75 mm diameter and axis 100 mm lying on the HP on one of its generators with the axis parallel to the VP

OR

10. Convert the following isometric view to orthographic views

R-19

Code: 19A511T \square
| B.Tech. I Semester Supplementary Examinations November 2023
Problem Solving and C Programming
(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I
 UNIT-I

1. a) What is a variable? What are the rules for declaring variables? Give examples of valid and invalid variables 8M
b) What is an algorithm? Describe the characteristics of an Algorithm 6MOR
2. a) What is data type? Explain basic data types and their sizes used in a C Language 7M
b) Draw the Flow Chart for finding a number is prime or not. 7M
UNIT-II
3. a) Write a C program to generate multiplication table 6M
b) Explain in detail about Control Statements? 8M
OR
4. a) Write a program in C to search for an element using linear search technique 7M
b) Explain about selection sort with suitable example. 7M
UNIT-III
5. a) Explain any five string manipulation library functions with examples. 9M
b) What is mean by recursion? Explain the advantages of recursive function. 5M
OR
6. What is function parameter? Explain different types of parameters in C functions. 14M
UNIT-IV
7. What is dynamic memory allocation? Write and explain the different dynamic memory allocation functions in C. 14M
OR
8. a) What is a pointer? Explain how the pointer variable declared and initialized. 7M
b) Write advantages and disadvantages of pointers 7M
UNIT-V
9. a) Explain how the structure variable passed as a parameter to a function with example. 7M
b) Write a C program to read and display a text from the file. 7M
OR
10. a) What is a self-referential structure? Give an example. 5M
b) What is a file? Explain how the file open and file close functions 9M

Hall Ticket Number

R-19

Code: 19AC11T

| B.Tech. I Semester Supplementary Examinations November 2023

Algebra and Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO BL

UNIT-I

1. a) If λ is an Eigen value of a non-singular matrix A, then $\frac{1}{\lambda}$ is an Eigen value
of A^{-1}
b) Find the Eigen values of $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & -2\end{array}\right]$

7M CO1 L2

7M CO1 L3
OR
2. a) Find the rank of $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12\end{array}\right]$
b) Solve $x+y+z=4,2 x+5 y-2 z=3, x+7 y-7 z=5$

UNIT-II

3. Reduce the quadratic form $2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z+2 z x$ to canonical form by using orthogonal transformation.

14M CO2 L3 OR
4. Diagonalize the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$

14M CO2 L2
UNIT-III
5. a) If $z=u^{2}+v^{2}$ and $u=a t^{2}, v=2 a t$, then find $\frac{d z}{d t}$

7 M CO3 L3
b) Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, if $z=\log \left(x^{2}+y^{2}\right)$

7M CO3 L3
OR
6. Find the maximum and minimum values of $x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x \quad 14 \mathrm{M} \quad$ CO3 \quad L3

UNIT-IV

7. Trace the curve $r=a \cos 2 \theta \quad 14 \mathrm{M}$ CO4 L4

OR

8. a) Expand $\sin x$ in powers of $\left(x-\frac{\pi}{2}\right)$.
b) Using Maclaurin's series, expand $\log (1+x)$ in powers of x.

7 M CO4 L3
$7 \mathrm{M} \mathrm{CO4} \mathrm{L3}$
9. Show that $\int_{0}^{\infty} x^{4} e^{-x^{2}} d x=\frac{3 \sqrt{\pi}}{8}$

14M CO5 L3
OR
10. a) Evaluate $\int_{0}^{2} \int_{0}^{3} x y d x d y$

7 M CO5 L3
b) Evaluate $\int_{0}^{2} \int_{0}^{x} y d y d x$ 7M CO5 L3

Code: 19AC12T

I B.Tech. I Semester Supplementary Examinations November 2023

Applied Physics

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Explain the Fraunhofer diffraction due to double slit with necessary theory and draw the intensity distribution curve.

OR
2. a) Describe the construction and theory of quarter and half wave plates.
b) Calculate the minimum thickness of wave plate for a light beam of wavelength, $\lambda=589.3 \mathrm{~mm}$ if $\mu_{\mathrm{e}}=1.48640$ and $\mu_{\mathrm{o}}=1.65833$.

6M CO1 L3

UNIT-II

3. a) Explain the hysteresis loop (B-H) of a ferromagnetic materials in detail.
b) A circular loop of coper having a diameter of 10 cm carries a current of 500 mA . Calculate the magnetic moment associated with the loop.

5M CO2 L3

OR

4. a) Distinguish between soft and hard magnetic materials.
b) What are the engineering applications of magnetic materials?
c) Calculate the magnetic moment per unit volume of a magnetic material placed in a magnetic field of intensity $1000 \mathrm{~A} / \mathrm{m}$. The magnetic susceptibility is -0.42×10^{-3}.

6 M CO2 L4
4 M CO 2 L 1

4 M CO2 L3

UNIT-III

5. a) Explain optical fiber communication system with block diagram.
b) An optical fiber has a core and cladding materials of refractive index 1.55 and 1.50 respectively and light is launched into it in air. Calculate the numerical aperture.

OR

6. State and prove the Stoke's and Gauss theorem

14M CO3 L2

UNIT-IV

7. a) Classify the solids into insulators, semiconductors and conductors based on its energy band diagram.
b) Explain electrical conductivity in semiconductors.

OR
8. a) Deduce expression for drift and diffusion current in semiconductors.
b) Explain the fermi energy level for p and n-type semiconductors.

UNIT-V

9. a) Define superconductor and write the applications of superconductors.
b) Classify the superconductors.

OR

10. a) Discuss about thermal, mechanical, and optical properties of nanomaterials.
b) Analyze the characterization of nanomaterials by scanning electron microscope.
$6 \mathrm{M} \mathrm{CO5}$ L3
8M CO5 L2
$6 \mathrm{M} \mathrm{CO4} \mathrm{L3}$
8M CO4 L2

8M CO4 L3
6 M CO 4 L2

6M CO5 L3

8 M CO5 L4

