Ha	II Ticket Number :			
		R-20		
Co	de: 20AC12T I B.Tech. I Semester Supplementary Examinations June Applied Physics (Common to EEE, ECE and AI&ML)	2024		
	x. Marks: 70	Time: 3	Hours	
Not	 e: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 			
	Answer all the following short answer questions $(5 \times 2 = 10M)$	CO	BL	
	a) Define interference and mention types	CO1	L1	
	b) Define dipole moment and write is equation	CO2	L1	
	c) Define divergence of vector field with equation		 L1	
	d) State Hall effect	CO4	L2	
	e) State Meissner's effect.		 L2	
	<u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit (5 x 12 :			
	This wer joor questions by choosing one question from each and (e x 12 -	Marks	´ co	E
	UNIT-I			
	What is diffraction and explain Fraunhofer diffraction due to double slit.	12M	CO1	l
	Describe the theory of Newton's ring experiment.	12M	CO1	L
a)	Explain frequency dependence of polarizability.	6M	CO2	ī
b)	Deduce Clausius – Mossotti Relation.		CO2	1
,	OR			
	Differentiate the dia, para, ferro, anti-ferro and ferrites. UNIT-III	12M	CO2	L
. a)	Explain divergence of vector field.	4M	CO3	L
b)	State and prove Pointing theorem.	8M	CO3	L
	OR			
. a)	Describe working of optical fiber with neat diagram.	4M	CO3	L
b)	Explain optical fiber communication with block diagram.	8M	CO3	l
. a)	Distinguish n-type and p-type semiconductors.	6M	CO4	l
b)	Derive the conductivity of semiconductor.	6M		l
0)	OR	OW	001	
	Derive Hall voltage and write their applications.	12M	CO4	I
a)	Discuss BCS theory of superconductivity.	8M	CO5	L
.a) b)		4M	CO5	L L
U)	Write the applications of superconductors. OR	4111	005	L
-)	Explain basic principles of nanomaterials	6M	CO5	L
. a)			_	
. a) b)	How nanomaterials synthesis by chemical vapor deposition method	6M	CO5	L

O BL 1 L1 2 L2 3 L2 4 L1
O BL 1 L1 2 L2 3 L2
O BL 1 L1 2 L2 3 L2
O BL 1 L1 2 L2 3 L2
1 L1 2 L2 3 L2
1 L1 2 L2 3 L2
1 L1 2 L2 3 L2
1 L1 2 L2 3 L2
2 L2 3 L2
3 L2
-
5 L1
CO BL
OO DE
1 L2
1 L2
1 L2
2 L2
2 L2
2 L3
2 LJ
3 L2
3 L2
3 L2
3 L2
4 L3
+ LO
4 L2
4 L2
5 L2
5 L2

	I Ticket Number : R-2	0	
Cod	le: 20A312T I B.Tech. I Semester Supplementary Examinations June 2024		
	Engineering Drawing		
	(Common to CE, EEE & ECE)		
N	Nax. Marks: 70 Time: 3	3 Нои	rs
A	nswer any five full questions by choosing one question from each unit (5x14 = 70	Marks	5)
		Marks	со
	UNIT–I		
1. a)	Divide a line of 100 mm into (i) 15 equal parts (ii) 7 equal parts.	7M	1
b		7M	1
	OR		
2.	Construct a rectangular hyperbola, when a point P on it is at a distance of 18mm and 34mm from two asymptotes. Also draw a tangent to a curve at a		
	point 20mm from an asymptote.	14M	1
	UNIT-II		
3. a)			
	Parallel and 30mm above HP and in the VP.	7M	2
b	Inclined at 45° to the VP, in the HP and its one end in the VP	7M	2
	OR		
4.	A line PQ, 70mm long is parallel to H.P and inclined at 30° to V.P. The end P is		
	25mm above H.P and 40mm in front of V.P. Draw the projections of the straight	4 4 5 4	2
	line.	14M	2
5.	UNIT-III A regular pentagon of 25mm side has one side on the ground. Its plane is		
5.	inclined at 45° to the HP and perpendicular to the VP. Draw its projections.	14M	3
	OR		-
6.	A regular hexagonal plane of 35mm side has a corner at 20mm from V.P and		
	50mm from H.P. Its surface is inclined at 45° to V.P and perpendicular to H.P.		
	Draw the projections of the plane.	14M	3
_			
7.	A cube of 40mm side, is resting with a face on HP such that when one of its vertical faces is inclined at 30 ^o at VP.	14M	4
	OR	14101	4
8.	A square pyramid, base 40mm side and axis 60mm long has a triangular face		
5.	in the V.P. The front view of the axis making an angle of 60° with XY (the apex		
	downwards). Draw its projections.	14M	4
	UNIT–V		
9.	Draw the Front view, Top view and side view for the following figure 1.		
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	X OX IS		
	8		
	1 2		
	0 56 ×		
	32		
	Figure 1.	14M	5
	OR		

OR

10. Draw the isometric view of a pentagonal pyramid of base side 30mm and height is 75mm, when its axis is perpendicular to H.P. 14M

1

	На	Il Ticket Number :			-
I	Coc	de: 20A511T	R-	20	
		I B.Tech. I Semester Supplementary Examinations June	2024		
		Problem Solving through C Programming			
	Ma	(Common to All Branches) x. Marks: 70	Time:	3 Hour	S
	Note	 e: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 			
1.	Ans	wer all the following short answer questions $(5 \times 2 = 10M)$		CO	BL
a) Lis	st the various steps that are involved in solving a problem		CO1	L1
b)) W	hat are selection statements?		CO2	L1
C)) W	hat is the difference between strlen() and sizeof the string?		CO3	L1
d)) W	hat is pointer and how to declare and initialize pointer.		CO4	L1
e) Ho	ow do we identify the end of file in C. Illustrate with an examp	le?	CO5	L1
		$\frac{PART-B}{C}$		1)	
		Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 =$	60 Marks	CO	BL
		UNIT-I			
2.	a)	Briefly explain about the basic data types that C			
		language supports.	6M	CO1	L2
	b)	What is flow chart? How it is useful in writing the programs? Explain about different symbols in flow chart	6M	CO1	L2
		OR			
3.	a)	Illustrate the Relational Operators and Logical operators in C.	6M	CO1	L3
	b)	Explain the operator precedence and Associativity with			
		examples in C.	6M	CO1	L2
4.	a)	In what way a dowhile is different from while looping statement. Explain.	6M	CO2	L2
	b)	Write a C program to find the factorial of a number using while loop.	6M	CO2	L3
		OR			
5.	a)	Sort the following list of elements using bubble sorting			
		technique2,45,0,11,-9	6M	CO2	L4
	b)	Briefly explain Binary Search algorithm.	6M	CO2	L2

UNIT-III

6. a)	consonants, digits spaces and special characters in a			
	line of string.	6M	CO3	L3
b)	Illustrate the concept of Towers of Hanoi Problem. How recursion helps to solve this problem.	6M	CO3	L3
	OR			
7. a)	Discuss the preprocessor directives.	6M	CO3	L2
b)	Write a C program to find the LCM of two integers.	6M	CO3	L3
8. a)	What is pointer arithmetic? Illustrate with an example	6M	CO4	L3
b)	Write a c program to swap two integer variables using swap function.	6M	CO4	L3
	OR			
9.	Explain in detail about Dynamic Memory Allocation	1014		
	functions with an examples in C programming. UNIT-V	12M	CO4	L2
10. a)	How to represent union in Structure? Explain with an			
	example.	6M	CO5	L2
b)	Illustrate file positioning functions in C with example.	6M	CO5	L3
	OR			
11. a)	What are self-referential structures? Explain them with			
	an example	6M	CO5	L2
b)	Write a program to copy one file data into another file. *** End ***	6M	CO5	L3

Hall Ticket Number :							
Code: 20AC11T	R-20						
I B.Tech. I Semester Supplementary Examinations June 2024							
Algebra and Calculus (Common to All Branches)							
	ime: 3 H	ours					
Note: 1. Question Paper consists of two parts (Part-A and Part-B)							
 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 							
<u>PART-A</u> (Compulsory question)							
1. Answer all the following short answer questions $(5 \times 2 = 10M)$	С	0	BL				
1 4 5	C	01	L1				
a) If $A = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 6 & 8 \\ 0 & 0 & 22 \end{bmatrix}$ then find the rank of A							
b) State Cayley-Hamilton theorem.	C	02	L2				
^{c)} Obtain Maclaurin's series for $f(x) = \sin x$	C	03	L3				
d) Write the area enclosed by a plane curve in xy-plane			L2				
e) Define Beta function	C	05	L1				
$\frac{PART-B}{PART-B}$	Mambra)						
Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$		со	BL				
UNIT-I							
2. Reduce the following matrix into its normal form and							
hence find its rank.							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
3 1 3 -2							
LO J U 71	12M	CO1	L1				
OR							
3. a) Show that a square matrix A and A^T have the same	6M	~~ /					
Eigen values	6M (CO1	L2				
 b) If } is Eigen value of an Orthogonal matrix, then show that is also its Eigen value. 							
	6M (CO1	L2				
UNIT-II 4 Boduce the quadratic form $2x x + 2x x - 2x x$ to canonical							
4. Reduce the quadratic form $2x_1x_2 + 2x_1x_3 - 2x_3x_2$ to canonical form by an orthogonal reduction and discuss its Nature							
form by an orthogonal reduction and discuss its Nature. Also find the model matrix.	12M	COS	13				
OR		002	20				

Code: 20AC11T

5. Show that the matrix
$$\begin{bmatrix} 1 & -2 & 2 \\ 1 & -2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$$
 satisfies its characteristic equation. Hence find A⁻¹. 12M CO2 L2
UNIT-III
6. a) Expand the Taylor's series expansion of sin xin powers of $\left(x - \frac{n}{2}\right)$ 6M CO3 L3
b) If $U = f(2x - 3y, 3y - 4z, 4z - 2x)$ then find the value of $\frac{1}{2}\frac{\partial U}{\partial x} + \frac{1}{3}\frac{\partial U}{\partial y} + \frac{1}{3}\frac{\partial U}{\partial z}$ 6M CO3 L3
OR
7. A rectangular box open at the top is to have volume of 32 cubic ft. find the dimensions of the box requiring least material for its construction. 12M CO3 L3
Evaluate the double integral $\iint_R xy dx dy$ where 'R' is the region bounded by the lines $x - axis$, the line $y = 2x$ and $y = \frac{x}{4a}$ 12M CO4 L5
OR
9. Evaluate the integral by changing the order of integration $\int_0^a \int_{\frac{y^2}{2}}^{2a-x} xy^2 dy dx$ 12M CO4 L5
OR
10. a) Show that $\int_0^1 x^m (\log x)^n dx = \frac{(-1)^n n!}{(m+1)^{m+1}}$ where n is a positive integer and m>-1 6M CO5 L5
OR
11. Express the following integrals in terms of gamma function $(i) \int_0^1 (\frac{1}{\sqrt{1-x^2}}) dx$ $(ii) \int_0^{\frac{\pi}{2}} \sqrt{\tan \theta} d\theta$ 12M CO5 L2

*** End ***