Code: 20AC11T
| B.Tech. I Semester Supplementary Examinations September 2022

Algebra and Calculus

(Common to All Branches)
Max. Marks: 70

Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) If $A=\left[\begin{array}{lll}1 & 2 & 5 \\ 0 & 3 & 2 \\ 0 & 0 & 4\end{array}\right]$ then find the Eigen values of A.
b) Define quadratic form and Write matrix of a quadratic form of

$$
Q=6 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-4 x_{1} x_{2}-2 x_{2} x_{3}+4 x_{3} x_{1}
$$

c) Differentiate Taylor's and Maclaurin's power series expansion CO 3
d) Evaluate $\int_{z=0}^{1} \int_{y=0}^{2} \int_{x=1}^{2} x y z d z d y d x$.
e) Evaluate $\Gamma\left(-\frac{1}{2}\right)$

CO5
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. Reduce the matrix $\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & 7\end{array}\right]$ into normal form.

OR
3. Find the Eigen values and Eigen vectors of the matrix

$$
A=\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

12M
4. Reduce the matrix $A=\left[\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right]$ to a Diagonal form

OR
12M
5. Reduce the quadratic form

$$
3 x^{2}+3 y^{2}+3 z^{2}+2 x y+2 x z-2 y z \text { to }
$$

canonical form by an orthogonal transformation
12M

UNIT-III

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0
$$

OR

UNIT-IV

8. a) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing to polar coordinates

6M
b) Evaluate $\int_{y=1}^{e} \int_{x=1}^{\log y} \int_{z=1}^{e^{x}} \log z d z d x d y$.

6M
9. Evaluate $\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2 \sqrt{a x}} d y d x$ by changing the order of th integration.

12M
10. a) Prove that $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{4}}}=\frac{\sqrt{\pi}}{4}$
b) Evaluate $\int_{0}^{1}\left(\log \frac{1}{x}\right)^{n-1} d x, n>0$ in terms of Gamma functions.

OR
11. a) Symmetry of Beta function $B(m, n)=B(n, m)$

4M
b) Prove that $\int_{0}^{\frac{\pi}{2}} \operatorname{Sin}^{2} \theta \operatorname{Cos}^{4} \theta=\frac{\pi}{32}$

8M L2
\squareHall Ticket Number :
Code: 20AC12T
R-20
I B.Tech. I Semester Supplementary Examinations September 2022
Applied Physics
(Common to EEE, ECE and AI\&ML)
Time: 3 Hours
Max. Marks: 70*********
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$ CO
a) List the engineering applications of interference. CO1
b) Draw hysteresis of a magnetic material. CO2
c) Explain total internal reflection of an optical fiber. CO3
d) Distinguish between direct and indirect bandgap semiconductors. CO4
e) Why nanomaterials are differ compared to bulk materials? CO5
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO
UNIT-I2. a) Define Newton's rings in interference of light.4M CO1L1
b) Deduce an equation for wavelength of light from Newton's rings. 8M CO1 L3
OR
2. a) Define polarization by double refraction. 4M CO1 L1
b) Explain Nicol's prism of double refraction. 8M CO1 L2
UNIT-II4. a) Derive Claussius-Mosotti relation in dielectrics.6 M CO 2L3
b) Mention the applications of dielectrics. 6 M CO 2 L1
OR
3. a) Distinguish between hard and soft magnetic materials. 8M CO2 L4
b) Write a short note on magnetic bubble memory? 4 M CO 2 L1
UNIT-III
4. a) Discuss Stroke's theorem for curl-Maxwell's equations. 8M CO3 L2
b) Explain electromagnetic wave propagation.4 M CO3 L2OR
5. a) Define acceptance angle and numerical aperture of a fibre. 4 M CO 3 L1
b) Explain propagation of light through an optical fibre.8M CO3 L2
UNIT-IV
6. a) Distinguish between intrinsic and extrinsic semiconductors. 6 M CO L4
b) Calculate density of majority charge carriers of a n-type semiconductor. 6M CO4 L3
OR
7. a) Explain drift and diffusion currents of a semiconductor. 8M CO4 L2
b) List the applications of semiconductors. $4 \mathrm{M} \quad \mathrm{CO} 4 \quad \mathrm{~L} 1$
UNIT-V
8. a) Discuss the properties of superconductors. 6M CO5 L2b) Explain Meissner's effect of superconductors.$6 \mathrm{M} \mathrm{CO5}$L2
OR
9. a) Describe the synthesis of nanomaterials by chemical vapor deposition. 8M CO5 L2
b) Mention the applications of nanomaterials. 4 M CO5 L1

Hall Ticket Number : \square
Code: 20A312T
I B.Tech. I Semester Supplementary Examinations September 2022

Engineering Drawing

(Common to CE, EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO

UNIT-I

1. Draw the locus of a point P moving so that the ratio of its distance from a fixed point F to its distance from a fixed straight line is $4 / 3$. Name the curve and draw a tangent and normal to the curve from any point on it.

14M co1
L1,L2

OR

2. Draw a hypocycloid generated by a rolling circle of diameter 50 mm and the diameter of the directing circle is 240 mm . Also draw a tangent and normal to the curve from any point on it.

14M co1
L1,L2

UNIT-II

3. Mark the projections of the following points on a common reference line:
$\mathrm{P}, 40 \mathrm{~mm}$ in front of VP and 20 mm below the HP
Q, 35 mm behind VP and 25 mm below the HP.
R, 40 mm in front of VP and 20 mm above the HP.
$\mathrm{S}, 30 \mathrm{~mm}$ above the HP and in the VP.
14M CO2 L1,L2

OR

4. A line NS, 80 mm long has its end N 10 mm above the HP and 15 mm in front of VP. The other end S is 65 mm above the HP and 50 mm in front of VP. Draw the projections of the line and find its true inclination with HP and VP.

14M CO2 L1,L2

UNIT-III

5. A regular hexagonal lamina of 40 mm side is resting on one its corner on HP. Its surface is inclined at 45° to HP. The plan of the diagonal through the corner which is on HP makes an angle of 45° with $X Y$. Draw its projections.

OR

6. Rectangle 30 mm and 50 mm sides is resting on HP on one small side which is 30° inclined to VP, while the surface of the plane makes 45° inclination with HP. Draw its projections.

UNIT-IV

7. A right pentagonal pyramid of side 20 mm and altitude 50 mm rests on one of its edges of the base in the HP. The base being tilted up such that the apex is 30 mm above HP. Draw the projection of the pyramid when the edge on which it is resting is perpendicular to VP.

OR

8. A cylinder of diameter 30 mm and axis length 50 mm is resting on the HP on a point so that its axis is inclined at 45° to HP and parallel to VP. Draw its top and front views.

14M co4

UNIT-V

9. A frustum of a square pyramid of bottom edge 50 mm , top edge 25 mm and height 50 mm . Draw the isometric projection of the frustum.

OR

10.

Draw the Front view, Top view and Right side view of the above figure.

14M CO5
L2,L3

Code: 20A511T

I B.Tech. I Semester Supplementary Examinations September 2022

Problem Solving through C Programming
 (Common to All Branches)

Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions
($5 \times 2=10 \mathrm{M})$
a) Consider the following program
\#include<stdio.h> main()
\{
int $\mathrm{a}=5$;
b = a < 2;
printf("a=\%d b=\%d \n", a,b);
\}
What is the output of above program? Explain it in two lines. 1
b) What is the difference between 'getchar()' and 'scanf()' in C 1
c) What is meant by Scope of Variable in C? 2
d) What is a void pointer? 4
e) How do we identify the end of file in C. Illustrate with an example? 4

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Write briefly about the C Tokens with suitable examples

6M 1
b) How many keyword and identifiers does C Language support? Explain.

6M 1 L2
OR
3. a) Explain the Structure of C program.

6M $\quad 1$
L2
b) Describe the various operators in C language along with its priority.
$6 \mathrm{M} \quad 1$

UNIT-II

4. a) What are Multi-dimensional arrays? How do we represent a Matrix using arrays?

6M 3
L2
b) Write a program to print the series in the following form for a number ' n ' : Example($n=4$)

6M 2
L3

OR

5. a) Explain Bubble sort algorithm with a suitable example. $6 \mathrm{M} \quad 3 \quad \mathrm{~L} 3$
b) Your teacher has conducted a test having a total of N questions, each question carries 3 marks for a correct answer and -1 for an incorrect answer. Students have decided to attempt all the questions. It is known that each student got X questions correct and the rest of them incorrect. For student to pass the course he must score at least P marks. Write a C program to simulate the above.
(Input: N, X, P
Output: Marks Obtained: \qquad , Status: Pass/ Fail)
UNIT-III
6. a) What is recursion? What is the format of a recursive function? Explain its advantages and limitations?

6M 3
b) Explain any four basic string functions with examples.

6M 3

OR

7. a) What are the various types of preprocessor directives?
b) Write a program to find GCD of Two numbers using recursion.

UNIT-IV

8. a) Explain pointer to function and function returning pointer with example.
b) Write a program to concatenate two strings using pointers. 6M 3
9. a) What is advantage of representing an array of string by an array of pointer to string?

6M $4 \quad$ L3
b) Distinguish between call by value and call by reference. Illustrate it with an example in C .

6M 4 L3 UNIT-V
10. a) Define a structure with the name 'student'. Assume appropriate fields in student structure. Develop a program which reads ' n ' students data and displays all ' n ' students' information.
b) Write about different built-in functions used in Files concept. $6 \mathrm{M} \quad 5 \quad \mathrm{~L} 2$ OR
11. a) What are self-referential structures? Explain them with an example.
b) Write a program to copy one file data into another file.

Code: 20A211T

R-20

I B.Tech. I Semester Supplementary Examinations September 2022
Basic Electrical Engineering
(Electrical and Electronics Engineering)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$
a) Define Active and Passive Elements.
$\begin{array}{lcc}\text { b) Find the equivalent inductance of series combination of Three } \\ \text { inductances with } 3 \mathrm{mH} \text { each. } & \begin{array}{c}\text { Blooms } \\ \text { Level }\end{array} \\ \text { bO1 } & \mathrm{BL} 1\end{array}$
CO2

c) Define i)Fuse ii)MCB

CO3 BL1
d) Distinguish between Thermal power station and Hydro power station.

CO4
BL2
e) Draw the VI Characteristics of PV Cell

CO5
BL2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Define
i) Fleming's right hand rule ii)Fleming's left hand rule
iii) Lenz's law

6M CO1
BL1
b) Discuss the magnetic hysteresis loop using B-H Curve.
$6 \mathrm{M} \mathrm{CO1}$

OR

3. Calculate the current flow in each branch of the circuit shown below:

UNIT-II

4. a) Calculate the equivalent Resistance between terminals A and B for the below circuit.

b) Define i)KCL
ii) KVL
iii)Ohms Law
OR

8M CO2
BL4
5. Find the total current passed through the circuit consisting of three resistors connected in parallel across the supply of 25 V . Where $R 1=12$, $R 2=10 \quad, R 3=20$. Also find the current passed through individual resistances R1, R2 and R3.

12M CO2 BL4

UNIT-III

6. a) List out the Measuring instruments.
b) Distinguish between Wires and Cables.

5M CO3 BL2

OR
7. a) Distinguish between Electrical and Electronic Instruments

7M CO3
BL2
b) Write a short notes on i) Function Generator ii)Oscilloscope

5 M CO
BL2

UNIT-IV

8. a) Draw the structure of the power system
b) Discuss the working principle of Nuclear power station

OR

9. a) Discuss the Principle of Operation of Nuclear Reactor.
b) Discuss the working principle of Thermal power station

UNIT-V
10. Discuss the horizontal and vertical axis wind turbines with applications

OR

11. Discuss the i)Solar Power Generation ii)Wind power Generation

12M CO5
BL2

