Hall Ticket Number :										
Code: 20AC11T							L	R-2	20	
I B.Tech. I Semest	-	pleme Igebr e		•			ptemb	oer 202	2	
		ommo								
Max. Marks: 70			*****	***				Time:	3 Hc	ours
Note: 1. Question Paper consi 2. In Part-A, each quest 3. Answer ALL the que	tion carı	ries Two in Part-	o mark A and l PART	Part-B		B)				
		•	·	-		(=) (=			E	Blooms
1. Answer ALL the follow	ving sh	ort ans	swer qu	uestion	าร	(5 X 2 =	= 10M)	CC)	Level
$\begin{bmatrix} 1 & 2 & 5 \end{bmatrix}$]									
a) If $A = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 3 & 2 \\ 0 & 0 & 4 \end{bmatrix}$										
a) If $A = \begin{bmatrix} 0 & 3 & 2 \\ & & \end{bmatrix}$	then	find th	ne Eig	en val	ues	of A.				
$\begin{bmatrix} 0 & 0 & 4 \end{bmatrix}$								СО	1	L3
b) Define quadratic for	m and	d Write	matri	x of a	qua	dratic fo	rm of	00	•	
$Q = 6x_1^2 + 3x_2^2$					-					
			1 2	_	_	5	3 1	CO	_	L2
c) Differentiate Taylor	s and	Macia	urin's	powe	r sei	ries expa	ansion	CO	3	L2
d) Evaluate $\int_{0}^{1} \int_{0}^{2} \int_$	cvz dz	dvdx								
O) Evaluate $\int_{z=0}^{\infty} \int_{y=0}^{\infty} \int_{x=1}^{\infty}$	i y 2, ci 2,	a yası.						СО	4	L3
								00	-	LO
e) Evaluate $\Gamma\left(-\frac{1}{2}\right)$									_	
(2)			PART	. Б				CO	5	L3
Answer five questions b	y choo	sing o			rom	each uni	t (5 x 1	2 = 60 M	arks	;)
·		J	•				•	Marks		Bloc
		UNI	IT–I							Le
	Γ2			17						
	1 -	-1 –	$2 - \frac{1}{2}$	4						
Reduce the matrix	3	1 3	<u>-</u> -	. 2 inte	o no	rmal for	m.			
. todaoo allo illatii/		, ,		_	.					
	Γο .	s 0	' /					12M		

OR

Code: 20AC11T

3. Find the Eigen values and Eigen vectors of the matrix

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

12M

L2

Reduce the matrix
$$A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$
 to a Diagonal form

12M

L2

L2

Reduce the quadratic form

4.

5.

$$3x^2 + 3y^2 + 3z^2 + 2xy + 2xz - 2yz$$
 to

canonical form by an orthogonal transformation

12M

L3

OR

6. a) If
$$u = f(e^{y-z}, e^{z-x}, e^{\frac{\log \log t}{x-y}})$$
, prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

6M

L3

b)
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \stackrel{?}{+} 2 + y^2 + z^2$$
If $u = \sqrt[3]{u(u,v,w)}$
 $y + z$, find $\frac{\partial u}{\partial (x,y,z)}$

6M

L2

7. Find
$$\lim_{\text{the minim}} \text{value of } \int_{x^2 + y^2 + z^2, \text{giv}}^{\text{ren}} \text{that } xyz = a3$$

L2

UNIT-IV

8. a) Evaluate
$$\int\limits_0^\infty \int\limits_0^\infty e^{-(x^2+y^2)}\,dxdy$$
 by changing to polar coordinates

6M

L3

b) Evaluate
$$\int_{y=1}^{e} \int_{x=1}^{\log y} \int_{z=1}^{e^x} \log z \, dz \, dx \, dy$$
.

coordinates

6M

L4

Code: 20AC11T

9. Evaluate $\int\limits_{0}^{4a}\int\limits_{\frac{x^{2}}{4a}}^{2\sqrt{ax}}dy\,dx$ by changing the order of the following specific contents of the second contents

integration.

12M

L3

UNIT-V

10. a) Prove that
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^4}} = \frac{\sqrt{f}}{4}$$

6M L3

b) Evaluate $\int_{0}^{1} \left(\log \frac{1}{x}\right)^{n-1} dx, n > 0$ in terms of Gamma functions.

L2

OR

6M

4M

L3

L2

b) Prove that
$$\int_{0}^{\frac{f}{2}} Sin^{2}_{"} Cos^{4}_{"} = \frac{f}{32}$$

8M

Page 3 of 3

Hall Ticket Number:			
	R-2	20	
Code: 20AC12T I B.Tech. I Semester Supplementary Examinations Septemb			
Applied Physics)O1 202.	_	
(Common to EEE, ECE and AI&ML)	- '	0.1.1	
Max. Marks: 70	Time:	3 HOU	rs
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B PART-A			
(Compulsory question)			D.
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{M})$		CO	Blooms Level
a) List the engineering applications of interference.	(CO1	L1
b) Draw hysteresis of a magnetic material.	(CO2	L4
c) Explain total internal reflection of an optical fiber.	(CO3	L2
d) Distinguish between direct and indirect bandgap semiconduc	tors.	CO4	L4
e) Why nanomaterials are differ compared to bulk materials?	(CO5	L3
PART-B			
Answer <i>five</i> questions by choosing one question from each unit (5 x 1)		-	Blooms
	Marks	СО	Level
UNIT-I	484		
a) Define Newton's rings in interference of light.		CO1	L1
b) Deduce an equation for wavelength of light from Newton's		004	1.0
rings.	OIVI	CO1	L3
OR a) Define relation by double refraction	411		
a) Define polarization by double refraction.		CO1	L1
b) Explain Nicol's prism of double refraction.	ØIVI	CO1	L2
a) Derive Claussius-Mosotti relation in dielectrics.	6M	CO2	1.2
b) Mention the applications of dielectrics.		CO2	
OR	Olvi	CO2	L1
	01/10	000	1.4
a) Distinguish between hard and soft magnetic materials.		CO2	
b) Write a short note on magnetic bubble memory?	4111	CO2	L1
a) Discuss Stroke's theorem for curl-Maxwell's equations.	81/18	CO3	1.2
b) Explain electromagnetic wave propagation.		CO3	
	4111	CO3	L2
OR			

2.

3.

4.

5.

6.

Code: 20AC12T

7.	a)	Define acceptance angle and numerical aperture of a			
		fibre.	4M	CO3	L1
	b)	Explain propagation of light through an optical fibre.	8M	CO3	L2
		UNIT-IV			
8.	a)	Distinguish between intrinsic and extrinsic semiconductors.	6M	CO4	L4
	b)	Calculate density of majority charge carriers of a n-type			
		semiconductor.	6M	CO4	L3
		OR			
9.	a)	Explain drift and diffusion currents of a semiconductor.	8M	CO4	L2
	b)	List the applications of semiconductors.	4M	CO4	L1
		UNIT-V			
10.	a)	Discuss the properties of superconductors.	6M	CO5	L2
	b)	Explain Meissner's effect of superconductors.	6M	CO5	L2
		OR			
11.	a)	Describe the synthesis of nanomaterials by chemical			
		vapor deposition.	8M	CO5	L2
	b)	Mention the applications of nanomaterials.	4M	CO5	L1
		*** End ***			

	Hall Tieket Number			
	Hall Ticket Number :	R-2	20	7
	I B.Tech. I Semester Supplementary Examinations Septemb Engineering Drawing			_
	(Common to CE, EEE & ECE) Max. Marks: 70 ********	Time:	3 Hour	S
	Answer any five questions by choosing one question from each unit (5×10^{-3}	4 = 70 N	Narks)	D.
		Marks	CO	Blooms Level
1.	Draw the locus of a point P moving so that the ratio of its distance from a fixed point F to its distance from a fixed straight line is 4/3. Name the curve and draw a tangent and normal to the curve from any point on it. OR	14M	CO1	L1,L2
 3. 	Draw a hypocycloid generated by a rolling circle of diameter 50 mm and the diameter of the directing circle is 240 mm. Also draw a tangent and normal to the curve from any point on it. UNIT-II Mark the projections of the following points on a common	14M	CO1	L1,L2
	reference line: P, 40 mm in front of VP and 20 mm below the HP Q, 35 mm behind VP and 25 mm below the HP. R, 40 mm in front of VP and 20 mm above the HP. S, 30 mm above the HP and in the VP. OR	14M	CO2	L1,L2
4.	A line NS, 80 mm long has its end N 10 mm above the HP and 15 mm in front of VP. The other end S is 65 mm above the HP and 50 mm in front of VP. Draw the projections of the line and find its true inclination with HP and VP. UNIT-III	14M	CO2	L1,L2
5.	A regular hexagonal lamina of 40 mm side is resting on one its corner on HP. Its surface is inclined at 45° to HP. The plan of the diagonal through the corner which is on HP makes an angle of 45° with XY. Draw its projections. OR	14M	CO3	L2,L4
6.	Rectangle 30 mm and 50 mm sides is resting on HP on one small side which is 30° inclined to VP, while the surface of the plane makes 45° inclination with HP. Draw its projections.	14M	CO3	L2,L4

Code: 20A312T

UNIT-IV

7. A right pentagonal pyramid of side 20 mm and altitude 50 mm rests on one of its edges of the base in the HP. The base being tilted up such that the apex is 30 mm above HP. Draw the projection of the pyramid when the edge on which it is resting is perpendicular to VP.

14M CO4 L2,L3

OR

8. A cylinder of diameter 30 mm and axis length 50 mm is resting on the HP on a point so that its axis is inclined at 45° to HP and parallel to VP. Draw its top and front views.

14M CO4 L2,L3

UNIT-V

9. A frustum of a square pyramid of bottom edge 50 mm, top edge 25 mm and height 50 mm. Draw the isometric projection of the frustum.

14M CO5 L2,L3

OR

10.

Draw the Front view, Top view and Right side view of the above figure.

14M CO5 L2,L3

*** End ***

Hall Ticket Number :									ſ			\neg
Code: 20A511T			,		<u>,</u>	,	<u>,</u>			R-2	20	
I B.Tech. I Sen				•						oer 2022	2	
Pr(oblem S	olving (Comm		_		_		ımıı	ıg			
Max. Marks: 70	\	COMM		****	лагк	511037				Time: 3	3 Houi	rs
Note: 1. Question Paper 2. In Part-A, each 3. Answer ALL th	question ca	arries Tv	vo ma	rk.		art-B))					
		(Com	PAI pulso	RT-A ry qu	estio	n)						
1. Answer ALL the	e followin	g short	answ	ver qu	uesti	ons	(5	5 X 2	e 10N	И)	СО	Blooms Level
a) Consider the #include <std 2="" <<="" a="5;" b="a" int="" main()="" printf("a="9)</p" {=""></std>	e followin lio.h>	g prog	ram									Levei
} What is the o	output of	ahove	nroc	rram	2 F	vnlaii	n it i	n tw	n line	29	1	L1
b) What is the o	-					•					1	L1
c) What is mea				_		-			V		2	L2
d) What is a vo	•	•									4	L1
e) How do we id	dentify th	e end o	of file	in C	. Illu	strate	e wit	th a	n exa	mple?	4	L2
•			PAI	RT-B								
Answer five quest	ions by ch	oosing o	ne qu	estion	ı froi	n eacl	h uni	t (5	x 12 =	60 Mark	(s)	Blooms
										Marks	СО	Level
\ \\\''\\ \\\\'\'\\\\\\\\\\\\\\\\\\\\\	1		IT–I		٠.					014		
a) Write briefly ab								•		6M	1	L2
b) How many ke support? Expla	•	and id	aenti	Tiers	ao	es (J L	.anç	guage	e 6M	1	L2
Support: Expic	AII 1.	C	R							Olvi	'	LZ
a) Explain the Str	ucture c			m.						6M	1	L2
b) Describe the v		•	•		lang	guag	e al	long	y with	า		
its priority.										6M	1	L2
		UN	IT–II									
a) What are Multi		sional a	array	∕s? ⊦	How	do v	we r	epr	esen			
a Matrix using	•	- (()		_ •	ı I.	C _ 11				6M	3	L2
b) Write a program	-		serie	s in t	ıne '	10110\	wing	j TOI	m 10	r 6M	2	L3

2.

3.

4.

Code: 20A511T

5.	a)	1 12 123 1234 123 123 12 1 OR Explain Bubble sort algorithm with a suitable example.	6M	3	L3
	-	Your teacher has conducted a test having a total of N questions, each question carries 3 marks for a correct answer and -1 for an incorrect answer. Students have decided to attempt all the questions. It is known that each student got X questions correct and the rest of them incorrect. For student to pass the course he must score at least P marks. Write a C program to simulate the above. (Input: N, X, P			
		Output: Marks Obtained:, Status: Pass/ Fail) UNIT-III	6M	2	L3
6.	a)	What is recursion? What is the format of a recursive function? Explain its advantages and limitations?	6M	3	L2
	b)	function? Explain its advantages and limitations? Explain any four basic string functions with examples.	6M	3	L2 L2
	,	OR			
7.	- 1	What are the various types of preprocessor directives?	6M	4	L2
8	b)	Write a program to find GCD of Two numbers using recursion. UNIT-IV Explain pointer to function and function returning pointer	6M	3	L3
0.	a)	with example.	6M	3	L2
	b)	Write a program to concatenate two strings using pointers. OR	6M	4	L3
9.	a)	What is advantage of representing an array of string by an array of pointer to string?	6M	4	L3
	b)	Distinguish between call by value and call by reference.	Olvi	7	LJ
	,	Illustrate it with an example in C. UNIT-V	6M	4	L3
10.	a)	Define a structure with the name 'student'. Assume appropriate fields in student structure. Develop a program which reads 'n' students data and displays all 'n' students'			
		information.	6M	5	L3
4.4	b)	Write about different built-in functions used in Files concept. OR	6M	5	L2
11.	a)	What are self-referential structures? Explain them with an	614	1	L2
	h)	example. Write a program to copy one file data into another file.	6M 6M	4 5	L2 L3
	U)	*** End ***	CIVI	Č	_0

Hall Ticket Number : R-20

I B.Tech. I Semester Supplementary Examinations September 2022

Basic Electrical Engineering

(Electrical and Electronics Engineering)

Max. Marks: 70 Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. In Part-A, each question carries Two mark.
- 3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1.	Answer ALL the following short answer questions $(5 \times 2 = 10M)$	СО	Blooms Level
a)	Define Active and Passive Elements.	CO1	BL1
b)	Find the equivalent inductance of series combination of Three		
	inductances with 3mH each.	CO2	BL4
c)	Define i)Fuse ii)MCB	CO3	BL1
d)	Distinguish between Thermal power station and Hydro power		
	station.	CO4	BL2
e)	Draw the VI Characteristics of PV Cell	CO5	BL2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12 = 60 \text{ Marks}$)

Marks CO Blooms Level

UNIT-I

- 2. a) Define
 - i) Fleming's right hand rule ii)Fleming's left hand rule
 - iii) Lenz's law

6M CO1 BL1

b) Discuss the magnetic hysteresis loop using B-H Curve.

014

6M CO1 BL1

OK

3. Calculate the current flow in each branch of the circuit shown below:

12M co1

Code: 20A211T

8M CO2

12M co2

5M co3

7M co3

BL4

BL2

BL4

BL₂

BL₂

BL₂

BL2

BL₂

BL₂

UNIT-II

4. a) Calculate the equivalent Resistance between terminals A and B for the below circuit.

D)	Define I)KCL	II)KVL	III)Onms Law	4IVI CO2
		OR		
5.	three resistors con		the circuit consisting of across the supply of 25V.	

, K2=10 ,R3=20 . Also find the current Where R1=12 esed through individual resistances R1, R2 and R3,

passed infought individual	i esisiai ides	NI, NZ
	UNIT-III	

6. a) List out the Measuring instruments. b) Distinguish between Wires and Cables.

D = f!:= = !\IZO!

OR

- 7. a) Distinguish between Electrical and Electronic Instruments 7M co3 BL2 Write a short notes on i) Function Generator ii)Oscilloscope 5M co3 BL₂ **UNIT-IV**
- Draw the structure of the power system 6M CO4 b) Discuss the working principle of Nuclear power station 6M co4

OR

- 9. a) Discuss the Principle of Operation of Nuclear Reactor. 6M CO4 BL2 6M CO4 BL₂
 - Discuss the working principle of Thermal power station **UNIT-V**

10. Discuss the horizontal and vertical axis wind turbines with applications

OR

11. Discuss the i)Solar Power Generation ii)Wind power Generation 12M co5

12M co5