Code: 20AC11T
I B.Tech. I Semester Supplementary Examinations November 2021

Algebra and Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Find the Rank of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 5 & 6\end{array}\right]$

1 1,2
b) State Cayley-Hamilton theorem
c) Obtain Meclaurin's series for $f(x)=\sin x$
d) Find $\int_{0}^{1} \int_{0}^{1}(x+y) d x d y$
e) Define Beta function

PART-B

Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)

2. a) Find the rank of the matrix $\left[\right.$| UNIT-I | | | |
| :---: | :---: | :---: | :---: |
| | -2 | 0 | 1 |
| 2 | -1 | 1 | 0 |
| 3 | -3 | 1 | 1 |
| -1 | -1 | -1 | 1 |$]$ by echelon form $\quad 6 \mathrm{M} \begin{array}{lll} & 1,2\end{array}$

b) Find whether the following equations are consistent, if so solve them. $x+y+2 z=4 ; 2 x-y+3 z=9 ; 3 x-y-z=2$

6M 1 1,2
OR
3. Find the eigen values and the corresponding eigen vectors of $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$

UNIT-II
4. Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$ and hence $12 \mathrm{M} \quad 2 \quad 1,2$ find A^{-1} and A^{4}
5. Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 x y-2 y z+2 z x$ to the normal form by orthogonal transformation

UNIT-III

6. a) If $u=x^{2}-2 y, v=x+y+z, w=x-2 y+3 z$ then $\frac{\partial(u, v, w)}{\partial(x, y, z)}$
b) Find the maximum and minimum values of $f(x, y)=x^{3}+y^{3}-3 a x y$

6M 3 1,2

OR

7. A rectangular box open at the top is to have volume of 32 cubic ft . Find the dimensions of the box requiring least material for its construction.

12M 3 1,2

UNIT-IV

8. a) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} \sqrt{a^{2}-x^{2}-y^{2}} d x . d y$
b) Evaluate $\int_{0}^{\pi / 4} \int_{0}^{\mathrm{a} i n} \theta \frac{r}{\sqrt{a^{2}-r^{2}}} d r d \theta$

6M 4 1,2

OR

9. Change the order of integration and evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} x y \mathrm{dx} . \mathrm{d} y$

12M 4 1,2

UNIT-V

10. a) Evaluate $\int_{0}^{\infty} e^{-2 x} \cdot x^{5 / 2} d x$ ii) Show that $\int_{0}^{\infty} x^{4} e^{-x^{2}} d x=\frac{3 \sqrt{\pi}}{8}$
$6 \mathrm{M} \quad 5 \quad 1,2$
b) State and prove Relation between Beta and Gamma functions
$6 \mathrm{M} 51,2$
OR
11. a) Evaluate $\int_{0}^{\infty} \frac{x^{2}}{\sqrt{1-x^{5}}} d x$ in terms of β function
$6 \mathrm{M} \quad 5 \quad 1,2$
b) Show that $\int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta \cos ^{4} \theta d \theta=\frac{\pi}{32}$

6M 5
1,2

Code: 20AC12T
| B.Tech. I Semester Supplementary Examinations November 2021

Applied Physics

(Common to EEE \& ECE)

Max. Marks: 70

Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) co
a) Distinguish between interference and diffraction. $\mathrm{CO1}$
b) Explain Ferroelectricity and with examples. Mention its applications. CO 2
c) State four Maxwell's equations. $\mathrm{CO3}$
d) Mention the applications of semiconductors CO 4
e) Define Nanotechnology, Nano scale. CO5

PART-B

Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)

		Marks	CO	Blooms Level
	UNIT-I			
2. a)	Explain the construction working and application of Nicol's Prism	5M	CO1	
b)	Mathematically evaluate that the brightness and bright fringe width changes with the order in Diffraction through single slit.	7M	CO1	
	OR			
3. a)	Explain Newton's rings experiment by reflection. Comment on the brightness of the central fringe and the fringe width of the Newton's rings	8M	CO1	
b)	Two coherent sources whose intensity is $81: 1$ produce interference fringes. Deduce the ratio of maximum intensity to minimum intensity.	4M	CO1	
	UNIT-II			
4. a)	Define local/internal field and deduce an expression for local/internal field in dielectrics.	7M	CO2	
b)	What are soft and hard magnetic materials? Give their characteristic properties and applications	5M	CO2	
	OR			
5. a)	Define electronic polarization and derive an expression for electronic polarizability.	6M	CO 2	
b)	What is Hysteresis? How would you use the hysteresis curve for selecting the material for use as permanent magnet?	6M	CO2	

UNIT-III
6. a) Derive the Electro Magnetic wave equation for non-conducting medium6M CO3
b) Explain the different types optical fibers based on refractive index profile in detail. 6M CO3
OR
7. a) State and prove Gauss divergence theorem6M CO3
b) Provide a detailed description of an optical fiber used in communication system with block diagram. 6 M CO
UNIT-IV8. a) Deduce an expression for the concentration of electrons in the conduction bandof an ' n ' type semiconductor.7M CO4
b) Explain the terms carrier generation, recombination, Drift, diffusion 5 M CO
OR
9. a) Define Hall effect. And how it is used to find the type of semiconductor by an experiment. 7M CO 4
b) Discuss the dependence of Fermi energy on carrier concentration and temperature 5M CO4
UNIT-V
10. a) Explain Meissner effect. Discuss DC and AC Josephson effect. 7M CO5
b) In detail explain one of the methods of fabrication of Nanomaterials. Mention any four applications of Nanotechnology. 5M CO
OR
11. a) What are Type-I and Type-II superconductors? Explain 6 M CO5
b) Discuss about surface to volume ratio and quantum confinement. $6 \mathrm{M} \mathrm{CO5}$
\square

Code: 20A211T

R-20

I B.Tech. I Semester Supplementary Examinations November 2021

Basic Electrical Engineering

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) What is right hand thumb rule? Explain 1 L1
b) State Kirchoff's Laws?
c) What is MCB? Explain
d) Write short notes on chain reaction?
e) What are standard test conditions?

PART-B

Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

2. a) State and explain Faradays laws of electromagnetic induction?

8M $1 \quad$ L1
b) Discuss the concept of leakage flux?

4M 1 L1
OR
3. What is hysteresis? Sketch hysteresis loop, and indicate on it the corceive force, and residual flux density?

UNIT-II

4. a) Derive necessary equations for converting a star network into equivalent delta network?

8M 2
b) Find V_{1} and V_{2} in the circuit shown in fig?

OR
5. a) Using source transformations find the value of V_{x} in the following circuit?

b) Find R_{ab} for the circuit shown in fig?

UNIT-III

6. a) How instruments are classified? Explain

6M 2 L1
b) Write short notes on switch fuse unit?

8M $3 \quad$ L1
4M 3 L1
OR
7. a) Explain the measurement of phase using Oscilloscope?

8M $3 \quad$ L1
b) What is earthing? Explain

4M 3 L1

UNIT-IV

8. Explain the layout and working principle of Thermal power station?

12M 4 L1
OR
9. a) Explain the principle of operation of nuclear reactor?

8M $4 \quad$ L1
b) What are Nuclear fuels?
$4 \mathrm{M} \quad 4 \quad$ L1

UNIT-V

10. a) Explain the principle of solar radiation?

6M $\quad 5 \quad$ L1
b) What is PV Cell? Explain its V-I Chatacerisitics?

6M 5 L1
OR
11. With the help of neat schematic explain the horizontal and vertical axis wind turbines?

Hall Ticket Number :

Code: 20A312T
I B.Tech. I Semester Supplementary Examinations November 2021
Engineering Drawing
(Common to CE, EEE \& ECE)
Max. Marks: 70

Time: 3 Hours
Answer any five questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO
UNIT-I

1. Construct a parabola with the distance of the focus from the directrix as 50 . Also draw normal and tangent to the curve at a point 40 from the directrix

14M CO1
L1,L2

OR

2. A coin of 40 mm diameter rolls over a horizontal table without slipping. A point on the circumference of the coin is in contact with the table surface in the beginning and after one complete revolution. Draw the path traced by the point. Draw a tangent and normal at any point on the curve.

14M CO1
L1,L2

UNIT-II

3. A point ' P ' is 15 mm above the H.P and 20 mm infront of the V.P. Another point ' Q ' is 25 mm behind the V.P and 40 mm below the H.P. Draw the projections of ' P ' and ' Q ' keeping the distance between the projectors equal to 90 mm . Draw straight lines joining (a) their top views and (b) their front views.

14M CO2
L1,L2

OR

4. A line $C D$ of length 70 mm has its end ' C ' 25 above the H.P and 20 mm infront of the V.P and its end 'D' is 70 mm above the H.P and 40 mm infront of the V.P. Draw its projections. Also determine its inclination with the two planes.

UNIT-III

5. A regular pentagon $A B C D E$ of side 30 mm has one of its edges parallel to the V.P. and inclined at 30° to H.P. The pentagon is inclined at 45° to the V.P. Draw the projections

OR

6. A circular lamina of 50 mm diameter is resting on the HP such that the surface of the lamina is inclined at 30° to the HP. The diameter through the point on which the lamina rests on the HP is inclined at 60° to VP. Draw its projections.

UNIT-IV

7. a) Draw the projections of a triangular prism, side of base 30 mm and axis 50 mm long is resting on H.P. on one of its bases when a face perpendicular to V.P.

7M
CO4
L2,L1,L4
b) Draw the projections of a cone of base 30 mm diameter and axis 50 mm long, when it is resting on H.P. on its base.

OR

8. A hexagonal pyramid, base 25 mm and axis 50 mm long, has an edge of its base on the ground. Its axis is inclined at 30° to the ground and parallel to the VP. Draw its projections.

14M CO5
L2,L3
UNIT-V
9. Draw the isometric view of a pentagonal prism of base 60 mm side, axis 100 mm long and resting on its base with a vertical face perpendicular to V.P.

14M CO5
L2,L3
OR
10. Draw the FV, TV and LSV of the following figure

Code: 20A511T

I B.Tech. I Semester Supplementary Examinations November 2021

Problem Solving through C Programming

(Common to All Branches)

Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Evaluate the expressions given below if $a=10, b=20$:
(i) $a / b+(a /(2 * b))$
(ii) $a \% 6 / b \% 3$
CO1
b) Differentiate between break and continue.

CO2
c) Discuss about some string functions

CO3
d) Define structures.

CO4
e) Write any five functions used in file i/o operations.

CO5

PART-B

Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

2. a) Draw a flowchart for displaying the sum of n numbers. Accept ' n ' from user.
b) What is a conditional expression operator? Use conditional expression operator to determine smallest of two numbers.

OR

3. a) Write an algorithm and draw flowchart for finding greatest among three given numbers.

6M CO1
L3
b) Explain about type conversions. Why there is a need to have them? Explain with suitable example.

6M CO1 L2

UNIT-II

4. a) What is the need of the iterations and selection? Explain each of the statements with examples.

6M CO2 L1
b) Write a program that asks user an arithmetic operator ('+', '-', '*' or '/') and two operands and perform the corresponding calculation on the operands. Use a switch statement

6M CO2 L3
OR
5. a) Differentiate between entry- control and exit-control loops with an example
b) Write a program to find smallest and largest numbers in a given array using Bubble Sort.

6M CO2 L2
$6 \mathrm{M} \mathrm{CO} \quad \mathrm{L} 3$
UNIT-III
6. a) How to declare string? Differentiate between character array and strings?
6M CO3
b) Demonstrate about different string functions which can be performed on strings 6M CO3 L3
OR7. a) Write a C program to find the average of n numbers using functions $\quad 6 \mathrm{M} \quad \mathrm{CO} 3$L3
b) How many types of storage classes does C supports? What is the necessity of each? 6 M CO 3 L1
UNIT-IV8. a) Write a program to swap two numbers using pointers.b) Elaborate the importance of dynamic memory allocation with example.6M CO4L1
6M CO4 L2
OR9. a) How can a pointer be used to access individual elements of an array?Explain with an example.6 M CO 4L1
b) Explain Advantages and Drawbacks of Pointers. 6 M CO 4 L2
UNIT-V10. a) Differentiate union and structures? Explain both with examples.$6 \mathrm{M} \mathrm{CO5}$L1
b) Define and declare a structure to store date, which including day, month and year and explain. 6M CO5 L2
OR
11. a) Differentiate between text files and binary files? Discuss about the conceptof a file6M CO5L2
b) Write a program to open a file and read the file and print the file contents. $6 \mathrm{M} \mathrm{CO5}$ L1

