Codo: 204.411T	J.			ı		J	R-20	
Hall Ticket Number :								

		1 B. Tech. 1 Semester Supplementary Examinations June 20)24		
		Basic Electrical & Electronics Engineering			
		(Electronics and Communication Engineering)			
	Ma		Time: 3	Hours	;
	Note	******** 2: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks . 3. Answer ALL the questions in Part-A and Part-B			
		$\frac{\mathbf{PART-A}}{\mathbf{A}}$			
4	۸	(Compulsory question)		00	DI
		ver all the following short answer questions (5 X 2 = 10M)		CO	BL
a)		fine Inductance and write the expression of energy stored in that.		CO1	L1
b)	Sta	ate Super position theorem?		CO2	L1
c)	Wr	nat are the Types of Semiconductor diodes?		CO3	L1
d)	De	fine Form factor.		CO4	L1
e)	Fo	r common base configuration, =		CO5	L2
		PART-B			
		Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$) Marks	;)	
			Marks	CO	BL
		UNIT-I			
2.	a)	Differentiate between Active and Passive elements.	6M	CO1	L2
	b)	What are the three essential Elements in circuit analysis and explain			
	-,	about each of element with their v and I relationships.	6M	CO1	L2
		OR			
3.	a)	Explain the voltage sources?	6M	CO1	L1
	b)	What are the active and passive elements?	6M		L1
	J)	UNIT-II	Olvi	001	
1	2)	Write short notes on Norton's theorem?	6M	CO2	L4
4.	a)				
	b)	Write short notes on source transformation?	OIVI	CO2	L4
_		OR			
5.		State and Explain	4014	000	
		i) Ohms law ii) Kirchhoff's current law iii) Kirchhoff's voltage law	12IVI	CO2	L2
		UNIT-III			
6.		Explain the VI characteristics of PN Junction diode with neat diagrams			
		and explain. What is Static Resistance and Dynamic Resistance?	12M	CO3	L2
		OR			
7.		Discuss the Volt-Ampere characteristics of a P-N Diode under reverse-			
		bias condition.	12M	CO3	L2
		UNIT-IV			
8.	a)	Explain the operation of Half wave Rectifier with Capacitor filter.	6M	CO4	L2
	b)	Explain the operation of Full wave Rectifier with Capacitor filter.	6M	CO4	L2
		OR			
9.		Explain the following i) Choke filter ii) - filter	12M	CO4	L2
		UNIT-V			
10.		Outline the input-output characteristics of a transistor in CE configuration.	12M	CO5	L4
		OR	. 4171	200	_7
11.		Discuss briefly the Transistor operation in CE configurations and their			
11.		characteristics?	12M	CO5	L2
		*** Fnd ***	12111	550	

Code: 20A312T						R-20	
Hall Ticket Number:							_

I B.Tech. I Semester Supplementary Examinations June 2024

Engineering Drawing

(Common to CE, EEE & ECE)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

- 1. a) Divide a line of 100 mm into (i) 15 equal parts (ii) 7 equal parts. 7M 1
 - b) Draw a pentagon of side 40 mm with one side vertical.

7M 1 1

1

2. Construct a rectangular hyperbola, when a point P on it is at a distance of 18mm and 34mm from two asymptotes. Also draw a tangent to a curve at a point 20mm from an asymptote.

14M 1

UNIT-II

- 3. a) Draw the projections of a line BC,75mm long in the following positions Parallel and 30mm above HP and in the VP.
- 7M 2

b) Inclined at 45° to the VP, in the HP and its one end in the VP

7M 2 1

4. A line PQ, 70mm long is parallel to H.P and inclined at 30° to V.P. The end P is 25mm above H.P and 40mm in front of V.P. Draw the projections of the straight line.

14M 2

UNIT-III

5. A regular pentagon of 25mm side has one side on the ground. Its plane is inclined at 45° to the HP and perpendicular to the VP. Draw its projections.

3

14M

OF

6. A regular hexagonal plane of 35mm side has a corner at 20mm from V.P and 50mm from H.P. Its surface is inclined at 45° to V.P and perpendicular to H.P. Draw the projections of the plane.

14M 3 2

UNIT-IV

7. A cube of 40mm side, is resting with a face on HP such that when one of its vertical faces is inclined at 30° at VP.

14M 4 2

OR

8. A square pyramid, base 40mm side and axis 60mm long has a triangular face in the V.P. The front view of the axis making an angle of 60° with XY (the apex downwards). Draw its projections.

14M 4 2

UNIT-V

9. Draw the Front view, Top view and side view for the following figure 1.

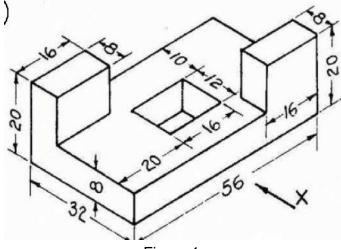


Figure 1.

14M 5

OR

10. Draw the isometric view of a pentagonal pyramid of base side 30mm and height is 75mm, when its axis is perpendicular to H.P.

14M 5 1

Hall Ticket Number: R-20 Code: 20A511T I B.Tech. I Semester Supplementary Examinations June 2024 Problem Solving through C Programming (Common to All Branches) Max. Marks: 70 Time: 3 Hours ****** Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B **PART-A** (Compulsory question) 1. Answer *all* the following short answer questions $(5 \times 2 = 10M)$ CO BL a) List the various steps that are involved in solving a problem CO1 L1 b) What are selection statements? CO2 L1 c) What is the difference between strlen() and size of the string? CO3 L1 d) What is pointer and how to declare and initialize pointer. CO4 L1 e) How do we identify the end of file in C. Illustrate with an example? CO5 L1 **PART-B** Answer *five* questions by choosing one question from each unit ($5 \times 12 = 60 \text{ Marks}$) Marks CO BLUNIT-I Briefly explain about the basic data types that C 2. a) language supports. 6M co1 L2 b) What is flow chart? How it is useful in writing the programs? Explain about different symbols in flow chart 6M CO1 L2 OR Illustrate the Relational Operators and Logical operators 3. a) 6M CO1 L3 b) Explain the operator precedence and Associativity with examples in C. 6M co1 L2 **UNIT-II** 4. a) In what way a do...while is different from while looping statement. Explain. 6M CO2 L2 b) Write a C program to find the factorial of a number using while loop. 6M CO2 L3 OR 5. a) Sort the following list of elements using bubble sorting technique. -2,45,0,11,-9 6M CO2 L4

b) Briefly explain Binary Search algorithm.

L2

6M CO2

Code: 20A511T

UNIT-III

		UNIT-III			
6.	a)	Write a C program to count the number of vowels and			
		consonants, digits spaces and special characters in a	01.4		
		line of string.	6M	CO3	L3
	b)	Illustrate the concept of Towers of Hanoi Problem. How			
		recursion helps to solve this problem.	6M	CO3	L3
		OR			
7.	a)	Discuss the preprocessor directives.	6M	CO3	L2
	b)	Write a C program to find the LCM of two integers.	6M	CO3	L3
		UNIT-IV			
8.	a)	What is pointer arithmetic? Illustrate with an example	6M	CO4	L3
	b)	Write a c program to swap two integer variables using			
		swap function.	6M	CO4	L3
		OR			
9.		Explain in detail about Dynamic Memory Allocation			
		functions with an examples in C programming.	12M	CO4	L2
		UNIT-V			
10.	a)	How to represent union in Structure? Explain with an			
		example.	6M	CO5	L2
	b)	Illustrate file positioning functions in C with example.	6M	CO5	L3
		OR			
11.	a)	What are self-referential structures? Explain them with			
		an example	6M	CO5	L2
	b)	Write a program to copy one file data into another file. *** End ***	6M	CO5	L3

	Hall Ticket Number :										Г			7
	Code: 20AC11T				,							R-2	0	
	IB.Tech. IS	Semeste	r Su	pple	eme	enta	ry Ex	kam	inatio	ns Ju	ne	2024		
			_	ebro										
	Max. Marks: 70	(Cor	nmo	n to	All t	sran	cnes	5)			Time: 3	Hours	S
	Notes 1 Overtion Depar	aansists at	. 4****	n onto		****		Dawt 1	D)					
	Note: 1. Question Paper 2. In Part-A, each			-			and I	art-	b)					
	3. Answer ALL th	e question	s in l	Part-		d Pai RT-A								
			((Comp			1	n)						
	Answer all the following						(5 X	2 =	10M)				CO	BL
_,	$\begin{bmatrix} 1 & 4 & 5 \\ 0 & 6 & 6 \end{bmatrix}$												CO1	L1
a,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nen find	the	ranl	k of	A								
b) State Cayley-Ham	ilton the	ore	m.									CO2	L2
	Obtain Maclaurin's) =	sin	. x						CO3	L3
	Write the area end							v-nl	ane					L2
) Define Beta function	•	,	piari	0 00		/	<i>y</i> P.	u110				CO5	L1
٠,	,				PAF	RT-B								
	Answer five questi	ions by ch	oosii	ng on	e qu	estio	n fro	m ea	ch unit	(5 x 1	12 =	60 Marks		BL
					UNIT	'-I						IVIAIKS		DL
2.	Reduce the f	following	m p	natri	x ir	nto	its	nori	mal f	orm	an	d		
	hence find its													
	[2	3 -1	L -	-1										
	1	-1 -2	2 -	-4										
	3	3 -1 -1 -2 1 3 3 0	-	-Z								12M	CO1	
		J 0		/-	OF	?						1 2111	CO	L I
3	a) Show that	o cauar	~ r	natr			od /	1^{T} ha	ovo tl	ho c	om.	0		
٦.	Eigen values	a Squai	e i	IIali	IX r	1 147	iu r	1 110	ave u	116 2	alli		CO1	1 12
	b) If } is Eigen	value (of a	n C)rthc	aar	ادر	mat	riv th	on c	hov		CO	l LZ
	that is also its				/1 ti ic	Jgoi	iai	mat	, u	icii s	1101			
	that lo also it	o Eigoii	vait		18117		7					61/1	CO1	L2
4	Dadwaa tha su		£		רואנ			2			.:	.1		
+.	Reduce the qu						_							
	form by an or Also find the m	•			ction	ı ar	ia a	IISCL	iss its	s inat	ure		000) 10
	AISO IIIIQ IIIE II	iou c i III	aun	٧.	OF	•						ı∠IVI	CO2	ı L3
					JI	•								

Code: 20AC11T

5. Show that the matrix $\begin{bmatrix} 1 & -2 & 2 \\ 1 & -2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ satisfies its characteristic equation. Hence find A⁻¹. 12M CO₂ L₂ UNIT-III

6. a) Expand the Taylor's series expansion of sin xin powers of

$$\left(x-\frac{n}{2}\right)$$

6M co₃ L₃

b) If U = f(2x - 3y, 3y - 4z, 4z - 2x) then find the value of $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{3} \frac{\partial u}{\partial z}$

6M co₃ L₃

OR

7. A rectangular box open at the top is to have volume of 32 cubic ft. find the dimensions of the box requiring least material for its construction.

12M CO3 L3

UNIT-IV

8. Evaluate the double integral $\iint_{\mathbb{R}} xydxdy$ where 'R' is the region bounded by the lines x - axis, the line y = 2x and

$$y = \frac{x}{4a}$$

12M CO4 L5

OR

9. Evaluate the integral by changing the order of integration $\int_0^a \int_{\underline{x^2}}^{2a-x} xy^2 dy dx$

12M CO4 L5

UNIT-V

10. a) Show that $\int_0^1 x^m (\log x)^n dx = \frac{(-1)^n n!}{(m+1)^{n+1}}$ where n is a positive integer and m>-1

6M CO5 L2

b) Evaluate $\int_0^{\frac{\pi}{2}} \sin^{10}\theta \ d\theta$

6M CO5 L5

OR

11. Express the following integrals in terms of gamma function

(i)
$$\int_0^1 \left(\frac{1}{\sqrt{1-x^4}}\right) dx$$
 (ii) $\int_0^{\frac{\pi}{2}} \sqrt{\tan\theta} d\theta$ 12M CO5 L2

Hall Ticket Number : R-20

Code: 20AC12T

I B.Tech. I Semester Supplementary Examinations June 2024

		1 b. recti. 1 series to supplementary Examinations some	2027		
		Applied Physics			
		(Common to EEE, ECE and AI&ML)	- : 0.		
	Ma	k. Marks: 70 *******	Time: 3 I	Hours	
	Note	: 1. Question Paper consists of two parts (Part-A and Part-B)			
	INOIC	2. In Part-A, each question carries Two marks.			
		3. Answer ALL the questions in Part-A and Part-B			
		PART-A			
		(Compulsory question)			
	1	. Answer all the following short answer questions (5 X 2 = 10M)	CO	BL	
	;	a) Define interference and mention types	CO1	L1	
	I	Define dipole moment and write is equation	CO2	L1	
		c) Define divergence of vector field with equation	CO3	L1	
		d) State Hall effect		L2	
		e) State Meissner's effect.		L2	
		PART-B	000		
		Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = $\frac{1}{2}$	60 Marks)	
			Marks	CO	BL
		UNIT-I			
2.		What is diffraction and explain Fraunhofer diffraction due to double slit.	12M	CO1	L2
		OR	12141	00.	
3.		Describe the theory of Newton's ring experiment.	121/1	CO1	L2
0.		UNIT-II	12111	001	LZ
4.	٥)	Explain frequency dependence of polarizability.	6M	CO2	L2
4.	a)		6M		
	b)	Deduce Clausius – Mossotti Relation.	OIVI	CO2	L4
_		OR	4014	000	
5.		Differentiate the dia, para, ferro, anti-ferro and ferrites.	12M	CO2	L3
		UNIT-III			
6.	a)	Explain divergence of vector field.	4M	CO3	L2
	b)	State and prove Pointing theorem.	8M	CO3	L3
		OR			
7.	a)	Describe working of optical fiber with neat diagram.	4M	CO3	L2
	b)	Explain optical fiber communication with block diagram.	M8	CO3	L2
		UNIT-IV			
8.	a)	Distinguish n-type and p-type semiconductors.	6M	CO4	L4
	b)	Derive the conductivity of semiconductor.	6M	CO4	L3
		OR			
9.		Derive Hall voltage and write their applications.	12M	CO4	L3
		UNIT-V			
10.	a)	Discuss BCS theory of superconductivity.	8M	CO5	L2
	b)	Write the applications of superconductors.	4M	CO5	L3
	/	OR			
11.	a)	Explain basic principles of nanomaterials	6M	CO5	L2
	b)	How nanomaterials synthesis by chemical vapor deposition method	6M	CO5	L2
	<i>5</i>)	*** End ***	OIVI	500	
		LIIU			