Code: 20A411T
I B.Tech. I Semester Supplementary Examinations July 2023

Basic Electrical and Electronics Engineering

(Electronics and Communication Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) Define Inductance and write the expression of energy stored in that. 1 L 1
b) Write the Statement of Thevenin's Theorem. 2 L1
c) What is the Zero bias condition in the P-N Junction diode? 3 L1
d) Define Form factor. 4 L1
e) Sketch the symbols of n-p-n and p-n-p transistors.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

OR

3. a) Define and give the symbols of the following
i) Dependent Sources
ii) Independent Sources

6M 1 L1
b) Define Capacitance and derive the Energy stored in the Capacitor.

6M 1 L1

UNIT-II

4. a) Find ' R ' in the circuit shown in below if the $R e q=50$ ohms.

b) A parallel Resonant circuit has $R=5 \mathrm{~K}, \mathrm{~L}=8 \mathrm{mH}$, and $\mathrm{C}=60 \mathrm{~F}$. Determine: i) Resonant frequency ii) The band width iii) The Quality Factor

6M 2 L3 OR
5. a) State and Explain L1,
i) Ohms law ii) Kirchhoff's current law iii) Kirchhoff's voltage law 6M 2 L2
b) Solve for 'i' using Norton's Theorem in the circuit shown in figure

6M 2 L3

UNIT-III

6. a) Briefly explain the zener breakdown and avalanche breakdown mechanisms in a PN junction diode.

6M 3 L3
b) Derive the expression for transition capacitance in a PN junction diode.

6M 3 L6

OR

$\begin{array}{llll}\text { 7. a) Define diffusion capacitance in a P-N junction diode and } \\ & \\ \text { discuss its dependence on diode biasing. } & 6 \mathrm{M} & 3 & \mathrm{~L} 1 \\ \text { b) Obtain different equivalent Circuits of a PN Junction diode. } & 6 \mathrm{M} & 3 & \mathrm{~L} 2\end{array}$

UNIT-IV

8. a) Draw the circuits of a full wave rectifier using 2-diodes and 4-diodes. Discuss the relative merits and demerits.

6M 4 L2
b) Explain the operation of Half wave Rectifier with the help of
neat diagrams.

OR

9. a) Derive expressions for ripple factor and efficiency of rectification for a full wave rectifier.

8M 4 L6
b) Compare C, L, L-Section, -Section (CLC and CRC) Filters in all respects.
$4 \mathrm{M} \quad 4 \quad$ L4

UNIT-V

10. Illustrate the input and output characteristics of BJT in three configurations.

12M
11. Compare BJT and JFET devices in all respects. $6 \mathrm{M} \quad 5 \quad \mathrm{L4}$
a) What is early effect? Explain how it affects the BJT Characteristics in CB Configuration.

Code: 20A312T
I B.Tech. I Semester Supplementary Examinations July 2023

Engineering Drawing

(Common to CE, EEE and ECE)

Max. Marks: 70
Time: 3 Hours
Answer five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Construct a parabola when the distance between the focus and directrix is 50 mm . Also draw the tangent and normal to any point on the curve.

OR

2. Construct an epicycloid of a circle 60 mm diameter which rolls outside of another circle of 120 mm diameter for one revolution. Draw tangent and normal to any point on the curve.

UNIT-II

3. A line NS, 80 mm long has its end $\mathrm{N}, 10 \mathrm{~mm}$ above the HP and 15 mm in front of the VP. The other end S is 65 mm above the HP and 50 mm in front of the VP. Draw the projections of the line and find its true inclinations with the HP and VP.

OR

4. Draw the projections of the following points on the same ground line, keeping the projections 30 mm apart.
i. A, in the H.P \& 30 mm , behind the V.P
ii. $\quad B, 30 \mathrm{~mm}$ above the H.P \& 15 mm in front of the V.P.
iii. C, in the V.P \& 50 mm above the H.P.
iv. D, 30 mm below the H.P \& 35 mm behind the V.P.
v. E, 25 mm above the H.P \& 65 mm behind the V.P.
vi. F, 45 mm below the H.P \& 35 mm in front of the V.P.
vii. G, in both the H.P \& the V.P.

UNIT-III

5. A regular pentagon of 25 mm side has one side on the ground. Its plane is inclined at 45° to the HP and perpendicular to the VP. Draw its projections
6. A semi-circular lamina of 64 mm diameter has its straight edge in VP and inclined at an angle of 45° to HP. The surface of the lamina makes an angle of 30° with VP. Draw the projections

UNIT-IV

7. A hexagonal pyramid, base 25 mm side and axis 50 mm long, has an edge of its base on the ground. Its axis inclined 30° to the ground and parallel to the V.P. Draw its projections

OR
8. Draw the projections of a pentagonal prism, base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the H.P with the axis inclined 45° to the V.P.

UNIT-V
9. Draw the top view, front view and left side view for the object shown below.

OR

10. Draw the isometric view of hexagonal prism, with side of base 25 mm and axis 60 mm long. The prism is resting on its base on HP, with an edge of the base parallel to VP.
\square
Code: 20A511T
I B.Tech. I Semester Supplementary Examinations July 2023
Problem Solving through C Programming
(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
11. In Part-A, each question carries Two marks.
12. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer the following ($5 \times 2=10 \mathrm{M}$)
CO BL
a) Summarize the basic Datatypes supported in C Programming. CO1 L2
b) Differentiate break and continue statements. $\mathrm{CO} \quad \mathrm{L} 2$
c) Interpret the declaration of a header file with < > and "". CO3 L2
d) Define Pointer.
CO4 L2
e) Differentiate text files and binary files.

PART-B

Answer five questions by choosing one question from each unit (5 x $12=60$ Marks)
Marks CO BL

UNIT-I

2. Discuss the types of operators in C programming.

12M 1 L2 OR
3. a) Define a variable and list the rules for variable declaration.

6M 1 L2
b) Differentiate global and local variables with examples.

6M 1 L2

UNIT-II

4. a) Model a C program to produce the Transpose of a given matrix.
b) Apply selection sort on the following list of elements $30,60,80,10,50,90,70,20$
6M 2 L3

OR

5. a) Discuss the conditional control statements in C programming. $6 \mathrm{M} \quad 2 \mathrm{~L} 3$
b) Model a C program for Linear search.

6M 2 L2

UNIT-III

6. a) Analyze the storage classes in C .
b) Describe the built-in functions strcmp(), $\operatorname{strcpy}()$.

8M 3 L4
4M 3 L2

OR

7. a) Model a C program to find the GCD of two integers using functions.
b) Describe actual and formal parameters in C programming.

UNIT-IV

8. a) Differentiate call by value and call by reference.
b) Develop a C program using the predefined functions malloc, and realloc.

OR

9. a) Differentiate static and dynamic memory allocation.
b) Apply bubble Sort over the list of integers using pointers

UNIT-V
10. a) Demonstrate the accessing members of a structure using variable.
b) Describe the file opening modes of operation. OR
11. a) Develop a c program to read and write data into a text file. $6 \mathrm{M} \quad 5 \quad \mathrm{~L} 5$
b) Demonstrate the passing array of structures to functions.

6M 5 L4
\square
Code: 20AC11T
| B.Tech. I Semester Supplementary Examinations July 2023

Algebra and Calculus

(Common to All Branches)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)
1.Answer ALL the following short answer questions
$(5 \mathrm{X} 2=10 \mathrm{M})$
CO BL
a) The rank of the matrix $\left.\begin{array}{ccc}, \frac{1}{2} & 1 & -1_{i}^{\text {sisory }} \text { quest } \\ {\left[\begin{array}{l}2 \\ 3\end{array}\right.} & -3 & 4 \\ 3 & -2 & 3\end{array}\right]$ Is $\ldots .$.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Reduce t_{h} e following matri ${ }^{2}$ into Echelon form and hence find
its rank. $\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 3 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 0 & -7\end{array}\right]$
b) Test for consistency and solve
$4 x-2 y+6 z=8$
$x+y-3 z=-1$
$15 x-3 y+9 z=21$

OR

3. Find the eigenvalues and ϵ jenvect matrix
4. Find the characteristic equations of the matrix; $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$

$A_{8}-\underset{j}{2 l} A_{7} A_{6}-{ }_{3} A_{5} A_{4}-\frac{1}{3} A_{3}+{ }_{3} A_{2}-{ }_{2} A+I . \quad$ ed by
12M 23
OR
5. Find the matrix \mathbf{P} which tra sforms $1<$

$$
\left[\begin{array}{lll}
1 & 1 & 3^{\text {th }} \\
3 & 5 & 1 \\
3 & 1 & 1
\end{array}\right]
$$

To the diagonal form. Hence calculate A^{4}
12M 23

$$
\log (1+\sin x)=x-\frac{x_{-}}{2} \neq \frac{x_{-}^{3}}{6}=\frac{x_{-}^{4}}{12} \neq \cdots \cdots
$$

b) Discuss the maxim $\sin x j=x-\frac{2}{2}-\frac{x}{12}+$

$$
\begin{gathered}
\text { and minima of } \\
f(x, y)=x x^{2} y^{2}(1-x-y) \\
\text { OR }
\end{gathered}
$$

7. a) If $x=r$
$\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}=r^{2} \sin \theta$
b) Find the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c}=1$. 6M $3 \quad 3$ 6M $3 \quad 3$ UNIT-IV
8. Evaluate $\int f r^{3} d r d \theta$ over the area bi

9. Evaluate $\int_{-1}^{-1} S_{0}^{=}$Express the following int ${ }^{\text {Egrals in terms }}$ of gamr na function

$$
\text { (i) } \int_{0}^{1}\left(\frac{1}{\sqrt{1-}} \overline{\bar{x}} \overline{\overline{4}}\right) d x \quad \text { (ii) } \int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta
$$

12M 52
6M $3 \quad 2$
-

