	Н	all Ticket Number :			٦
	Сс	ode: 20AC12T	R-20)	
		I B.Tech. I Semester Supplementary Examinations November	2021		
		Applied Physics			
		(Common to EEE & ECE)			
	M	ax. Marks: 70 ********	me: 3	Hour	S
	No	 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 			
		PART-A (Compulsory question)			
		1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$		СО	Blooms
		a) Distinguish between interference and diffraction.		CO1	
		b) Explain Ferroelectricity and with examples. Mention its applications.		CO2	
		c) State four Maxwell's equations.		CO3	
		d) Mention the applications of semiconductors		CO4	
		e) Define Nanotechnology, Nano scale.		CO5	
		PART-B			
	A	nswer any five full questions by choosing one question from each unit ($5 \times 12 =$	60 Ma	irks)	
			Marks	CO	Bloom: Level
		UNIT-I			
6	a)	Explain the construction working and application of Nicol's Prism	5M	CO1	
k	b)	Mathematically evaluate that the brightness and bright fringe width changes with			
		the order in Diffraction through single slit.	7M	CO1	
		OR			
ć	a)				
		the central fringe and the fringe width of the Newton's rings	8M	CO1	
k	o)	Two coherent sources whose intensity is 81:1 produce interference fringes.	45.4		
		Deduce the ratio of maximum intensity to minimum intensity.	4IVI	CO1	
	-\	UNIT-II			
ć	a)	Define local/internal field and deduce an expression for local/internal field in dielectrics.	7M	CO2	
ŀ	b)	What are soft and hard magnetic materials? Give their characteristic properties	7 101	002	
١	<i>-</i> ,	and applications	5M	CO2	
		OR			
ć	a)	Define electronic polarization and derive an expression for electronic			

b) What is Hysteresis? How would you use the hysteresis curve for selecting the

polarizability.

material for use as permanent magnet?

6M CO2

6M CO2

Code: 20AC12T

		UNIT-III							
6.	a)	Derive the Electro Magnetic wave equation for non-conducting medium	6M	CO3					
	b)	Explain the different types optical fibers based on refractive index profile in detail.							
		OR							
7.	a)	State and prove Gauss divergence theorem	6M	CO3					
	b)	Provide a detailed description of an optical fiber used in communication system with block diagram.	6M	CO3					
		UNIT-IV							
8.	a)	Deduce an expression for the concentration of electrons in the conduction band of an 'n' type semiconductor.	7M	CO4					
	b)	Explain the terms carrier generation, recombination, Drift, diffusion	5M	CO4					
		OR							
9.	a)	Define Hall effect. And how it is used to find the type of semiconductor by an experiment.	7M	CO4					
	b)	Discuss the dependence of Fermi energy on carrier concentration and temperature	5M	CO4					
10.	a)	UNIT-V Explain Meissner effect. Discuss DC and AC Josephson effect.	7M	CO5					
10.	b)	In detail explain one of the methods of fabrication of Nanomaterials. Mention any	, , , ,	000					
	٠,	four applications of Nanotechnology.	5M	CO5					
		OR							
11.	a)	What are Type-I and Type-II superconductors? Explain	6M	CO5					
	b)	Discuss about surface to volume ratio and quantum confinement.	6M	CO5					
		*** End ***							

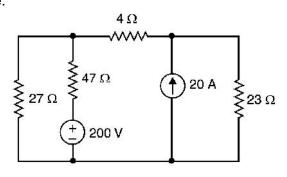
Hall Ticket Number: R-20 Code: 20A411T

I B.Tech. I Semester Supplementary Examinations November 2021

Basic Electrical and Electronics Engineering

(Electronics and Communication Engineering)

Time: 3 Hours Max. Marks: 70


- Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 - 2. In Part-A, each question carries Two mark.
 - 3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1.	Answer ALL the following short answer questions	(5 X 2 = 10M)	CO	Blooms Level
a)	State the Ohm's law.		CO1	L1, L2
b)	State Kirchhoff's Voltage law.		CO2	L1, L2
c)	What is a Insulator, Semiconductor and a Conductor?		CO3	L1, L2
d)	Define Peak Inverse Voltage (PIV).		CO4	L1, L2
e)	For common base configuration, =		CO5	L1, L2

		PART-B										
	Answer any <i>five full</i> questions by choosing one question from each unit ($5 \times 12 = 60 \text{ Marks}$)											
			Marks	СО	Blooms Level							
		UNIT-I										
2.	a)	What is an Active and Passive Element? Explain briefly.	6M	CO1	L1, L2							
	b)	What is a function generator? Briefly explain its working principle and uses.	6M	CO1	L1, L2							
		OR										
3.		What is a CRO? Elaborate in detail about the construction and working of a										
		CRO.	12M	CO1	L1, L2							
		UNIT-II										
4.	a)	Explain briefly about Maximum power theorem.	6M	CO2	L1, L2							
	b)	Discuss about Kirchhoff's voltage and Current laws with the help of examples.	6M	CO2	L1, L2							
		OR										
5.	a)	State Thevenin's theorem.	2M	CO2	L1, L2							
	b)	Apply superposition theorem, find the current in 23 resistor in the circuit shown in Figure.										

10M CO2 L2, L3

Code: 20A411T

		$oldsymbol{arphi}$	oue. 2	UATI	LI
		UNIT-III			
6.	a)	Write in detail about classification of semi-conductors.	6M	CO3	L1, L2
	b)	What is meant by Zener breakdown and explain the operation of a Zener diode.	6M	CO3	L1, L2
		OR			
7.	a)	With the help of necessary diagrams, explain the formation of a P-N Junction Diode.	6M	CO3	L1, L2
	b)	Discuss the Volt-Ampere characteristics of a P-N Diode under reverse-bias condition.	6M	CO3	L1, L2
		UNIT-IV			
8.	a)	What are rectifiers? Classify them.	6M	CO4	L1, L2
	b)	Construct and explain the Half-wave rectifier in detail.	6M	CO4	L1, L2
		OR			
9.	a)	Describe the L-Section (Choke) filter with help of a diagram.	6M	CO4	L1, L2
	b)	Elaborate on Capacitor filter with necessary figures.	6M	CO4	L1, L2
		UNIT-V			
10.		Write in detail about NPN Transistor and PNP Transistor.	12M	CO5	L1, L2
		OR			
11.		Explain in detail the operation, Input and output characteristics of a transistor in Common Base Configuration. *** End ***	12M	CO5	L1, L2

Hall Ticke	et Number :											
Code: 20	A312T		,		<u>"</u>				F	2-20		
	B.Tech. I Se	emester S	Supple	mento	ary Ex	kamii	natio	ns Nove	ember 2	2021		
			_	neerir	_		_					
	. 70	(Comm	non to	CE, EI	EE & I	ECE)			0.1		
Max. M	arks: 70			****	****				lin	ne: 3 H	lours	
Ans	wer any five q	uestions by	/ choosi	ng one	questic	on fror	n each	unit (5)	14 = 70	Marks)	
										Marks	СО	Blo Le
			U	NIT-I								
	uct a parabola ormal and tang								50. Also	14M	CO1	L
circumf after or and nor	of 40mm diamerence of the complete rand at any po	coin is in evolution. I	contact Draw the curve.	with the e path t	e table traced	surfa by th	ce in t e poin	he begin t. Draw a	ning and tangent	14M	CO1	L
is 25 m 'Q' keep	m behind the ping the distar	V.P and 40 nce betwee) mm be n the pr	low the ojectors	H.P. [equal	Oraw t	he pro	jections o	of 'P' and	14M	CO2	L
the V.P	CD of length 7 and its end 'lections. Also controls.	D' is 70 mn	n above s inclina	the H.P	and 4	l0 mm	infron			14M	CO3	L2,L
•	ar pentagon <i>F</i> llined at 30º t ons		side 30 r	nm has			•			14M	CO3	L2,L
the lam	lar lamina of a inclined rests on the H	l at 30º to t	he HP. d d at 60°	The dia	meter t	throug	h the	point on v		14M	CO4	L
is restin	ne projections ng on H.P. on	one of its b	ular pris ases wh	m, side en a fa	ce per _l	pendio	cular to	V.P.		7M	CO4	L2,L
•	ne projections ng on H.P. on		of base 3		iamete	er and	axis 50	Omm long	ı, when it	7M	CO4	L2,L
	gonal pyramid und. Its axis i					_		•				
projecti				NIT-V		•				14M	CO5	l

9. Draw the isometric view of a pentagonal prism of base 60mm side, axis 100 mm long and resting on its base with a vertical face perpendicular to V.P.

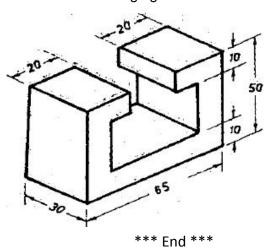
L2,L3

14M CO5

Draw the FV, TV and LSV of the following figure 10.

1.

2.


3.

4.

5.

6.

7.

14M co1 L2,L3

	Hall Ticket Number :							
(Code: 20A511T						R-20	
•	20A3111							Ī

I B.Tech. I Semester Supplementary Examinations November 2021

	I	B.Tech. I Semester Supplementary Examinations November	er 202	21	
		Problem Solving through C Programming			
		(Common to All Branches)	 '	0.11	
Ma	x. M	arks: 70 *******	lime:	3 Hou	Jrs
Note	2.	Question Paper consists of two parts (Part-A and Part-B) In Part-A, each question carries Two mark . Answer ALL the questions in Part-A and Part-B			
		PART-A			
		(Compulsory question)			Blooms
1.		Answer ALL the following short answer questions $(5 \times 2 = 10M)$		CO	Level
	-	Evaluate the expressions given below if a=10, b=20:			
		(i) a/b + (a / (2 * b)) (ii) a % 6 / b%3		CO1	L5
	,	Differentiate between break and continue.		CO2	L2
	•	Discuss about some string functions		CO3	L2
	d)	Define structures.		CO4	L4
	e) '	Write any five functions used in file i/o operations.		CO5	L2
		PART-B	2 (0		`
An	swei	any five full questions by choosing one question from each unit (5×1	2 = 60	Marks	Blooms
			Marks	CO	Level
		UNIT-I			
2.	a)	Draw a flowchart for displaying the sum of n numbers. Accept 'n' from			
		user.	6M	CO1	L6
	b)	What is a conditional expression operator? Use conditional expression			
		operator to determine smallest of two numbers.	6M	CO1	L1
		OR			
3.	a)	Write an algorithm and draw flowchart for finding greatest among three	21.4	004	
		given numbers.	6IVI	CO1	L3
	b)	Explain about type conversions. Why there is a need to have them?	GN4	CO1	L2
		Explain with suitable example.	OIVI	CO1	LZ
4.	۵)	What is the need of the iterations and selection? Explain each of the			
4.	a)	What is the need of the iterations and selection? Explain each of the statements with examples.	6M	CO2	L1
	h)	Write a program that asks user an arithmetic operator ('+', '-', '*' or '/') and	0	002	
	٠,	two operands and perform the corresponding calculation on the			
		operands. Use a switch statement	6M	CO2	L3
		OR			
5.	a)	Differentiate between entry- control and exit-control loops with an			
		example	6M	CO2	L2
	b)	Write a program to find smallest and largest numbers in a given array			
		using Bubble Sort.	6M	CO2	L3
			ſ	Page 1 c	of 2

Code: 20A511T

			ode: 2	0A5111	
		UNIT-III			
6.	a)	How to declare string? Differentiate between character array and strings?	6M	CO3	L1
	b)	Demonstrate about different string functions which can be performed on strings	6M	CO3	L3
		OR			
7.	a)	Write a C program to find the average of n numbers using functions	6M	CO3	L3
	b)	How many types of storage classes does C supports? What is the			
		necessity of each?	6M	CO3	L1
		UNIT-IV			
8.	a)	Write a program to swap two numbers using pointers.	6M	CO4	L1
	b)	Elaborate the importance of dynamic memory allocation with example.	6M	CO4	L2
		OR			
9.	a)	How can a pointer be used to access individual elements of an array?			
		Explain with an example.	6M	CO4	L1
	b)	Explain Advantages and Drawbacks of Pointers.	6M	CO4	L2
		UNIT-V			
10.	a)	Differentiate union and structures? Explain both with examples.	6M	CO5	L1
	b)	Define and declare a structure to store date, which including day, month			
		and year and explain.	6M	CO5	L2
		OR			
11.	a)	Differentiate between text files and binary files? Discuss about the concept			
		of a file	6M	CO5	L2
	b)	Write a program to open a file and read the file and print the file contents. *** End ***	6M	CO5	L1

Hall Ticket Number :			_
Code: 20A C11T	R-20		
Code: 20AC11T I B.Tech. I Semester Supplementary Examinations November	2021		_
Algebra and Calculus	2021		
(Common to All Branches)			
	me: 3 H	loui	rs
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B			
PART-A (Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{M})$	С	0	Blooms Level
a) Find the Rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$		1	1,2
b) State Cayley-Hamilton theorem	,	2	1
c) Obtain Meclaurin's series for f(x) = sin x	;	3	1,2
d) Find $\int_{0}^{\infty} \int_{0}^{\infty} (x+y) dx dy$	4	4	1,2
e) Define Beta function	ţ	5	1
<u>PART-B</u>			
Answer any <i>five full</i> questions by choosing one question from each unit ($5 \times 12 =$	= 60 Ma	rks)	
	Marks	СО	Blooms Level
UNIT-I			
$\begin{bmatrix} 1 & -2 & 0 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix}$			
2. a) Find the rank of the matrix $\begin{bmatrix} 1 & -2 & 0 & 1 \\ 2 & -1 & 1 & 0 \\ 3 & -3 & 1 & 1 \\ -1 & -1 & -1 & 1 \end{bmatrix}$ by echelon form	6M	1	1,2
b) Find whether the following equations are consistent, if so solve them. x+y+2z=4; 2x-y+3z=9; 3x-y-z=2	6M	1	1,2
OR			
3. Find the eigen values and the corresponding eigen vectors of $\begin{bmatrix} 6 & -2 & 2 \end{bmatrix}$			
$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$	12M	1	1,2
UNIT-II			
$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$			
4. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ and hence	12M	2	1,2

find A⁻¹ and A⁴

Code: 20AC11T

5. Reduce the quadratic form $3x^2+5y^2+3z^2-2xy-2yz+2zx$ to the normal form by orthogonal transformation 12M 2 1,2

UNIT-III

6. a) If
$$u = x^2 - 2y$$
, $v = x + y + z$, $w = x - 2y + 3z$ then $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ 6M 3 1,2

b) Find the maximum and minimum values of $f(x, y) = x^3 + y^3 - 3axy$ 6M 3 1,2

OR

7. A rectangular box open at the top is to have volume of 32 cubic ft. Find the dimensions of the box requiring least material for its construction.

UNIT-IV

8. a) Evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^2-y^2}} \sqrt{a^2-x^2-y^2} dx.dy$$
 6M 4 1,2

b) Evaluate
$$\int_{0}^{f_{4}} \int_{0}^{a \sin x} \frac{r}{\sqrt{a^{2} - r^{2}}} dr dr$$
 6M 4 1,2

OR

9. Change the order of integration and evaluate
$$\int_{0}^{1} \int_{x^{2}}^{2-x} x y dx dy$$
 12M 4 1,2

UNIT-V

10. a) Evaluate
$$\int_{0}^{\infty} e^{-2x}$$
. $x^{5/2} dx$ ii) Show that $\int_{0}^{\infty} x^4 e^{-x^2} dx = \frac{3\sqrt{f}}{8}$ 6M 5 1,2

b) State and prove Relation between Beta and Gamma functions 6M 5 1,2

OR

*** End ***

11. a) Evaluate
$$\int_{0}^{\infty} \frac{x^2}{\sqrt{1-x^5}} dx$$
 in terms of S function 6M 5 1,2

b) Show that
$$\int_{0}^{\frac{f}{2}} \sin^2 u \cos^4 u \, du = \frac{f}{32}$$
 6M 5 1,2

Page 2 of 2