Hall Ticket Number :										

Code: 20A411T

R-20

I B.Tech. I Semester Supplementary Examinations Dec 2023 / Jan 2024

Basic Electrical and Electronics Engineering

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \mathrm{BL}$
a) Define the terms Voltage and Current CO1 L1
b) Write the Statement of Thevenin's Theorem. CO 2 L 1
c) What is static Resistance of Semiconductor diodes? CO3 L1
d) Write the differences between Half wave rectifier and Full wave rectifier? CO4 L1
e) Draw the Input \& Output Characteristics of CB configurations. CO5 L1
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
Marks CO BL
UNIT-I
2. Describe the construction and operation of Function Generator with neat diagram.
12M CO1 L2
OR
3. a) Define Inductance and derive the Energy stored in the Inductor. 6M CO1 L1
b) Describe the expression for energy stored in the capacitor? 6M CO1 L1

UNIT-II

4. a) State and explain the Kirchhoff's Laws?
6 M CO2 L2
b) State and explain the Ohm's Law?
6 M CO L2

OR

5. State and explain the Thevenin's theorem with suitable example?
12 M CO2 L3

UNIT-III

6. a) Draw and explain the V-I characteristics of P-N Junction diode? 6M CO3 L2
b) Explain how zener diode acts as a Voltage regulator? 6M CO3 L3
OR
7. a) Write in detail about classification of semi-conductors
6 M CO3 L2
b) What is meant by Zener breakdown and explain the operation of a Zener diode. 6M CO3 L1
UNIT-IV
8. a) Draw the circuits of a full wave rectifier using 2-diodes and 4-diodes. 7M CO4 L1
b) Discuss the relative merits and demerits. $\quad 5 \mathrm{M} \quad \mathrm{CO} 4 \quad \mathrm{L2}$
OR
9. Draw and explain the operation of Half wave Rectifiers? 12M CO4 L2

UNIT-V

10. Discuss the Construction and operation of P-N-P transistor with neat sketches? $\quad 12 \mathrm{M}$ CO5 L2
OR
11. Outline the input-output characteristics of a transistor in CB configuration. $12 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 4$

Hall Ticket Number :										

Code: 20A312T
I B.Tech. I Semester Supplementary Examinations Dec 2023 / Jan 2024

Engineering Drawing

(Common to CE, EEE \& ECE)

Max. Marks: 70

Time: 3 Hours

Answer any five questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO

UNIT-I

2. P, Q and R are the centres of three circles of diameters 75 mm , 45 mm and 30 mm respectively. $\mathrm{PQ}=95 \mathrm{~mm}, \mathrm{QR}=50 \mathrm{~mm}$ and $P R=75 \mathrm{~mm}$. Draw a circle touching the three circles.

OR

3. Q is a diameter of a circle and is 75 mm long. A piece of string is tied tightly round the circumference of the semi-circle starting from P and finishing at Q. The end Q is then untied and the string, always kept taut, is gradually unwound from the circle, until it lies along the tangent at P. Draw the curve traced by the moving extremity of the string.

UNIT-II

4. A line $P Q$ is 75 mm long and lies in an auxiliary inclined plane (A.LP.) which makes an angle of 45° with the H.P. The front view of the line measures 55 mm and the end P is in the V.P. and 20 mm above the H.P. Draw the projections of PQ and find (i) its inclinations with both the planes and (ii) its traces.

OR

5. A line $A B$ is in the first quadrant. Its end A and B are 20 mm and 60 mm in front of the V.P. respectively. The distance between the end projectors is 75 mm . The line is inclined at 30° to the H.P. and its H.T. is 10 mm above xy . Draw the projections of $A B$ and determine its true length and the V.T.

UNIT-III

6. Draw the projections of a circle of 50 mm diamete1~ having its plane vertical and inclined at 30° to the V.P. Its centre is 30 mm above the H.P. and 20 mm in front of the V.P. Show also its traces.

14M CO3

OR

7. A square ABCO of 50 mm side has its corner A in the H.P., its diagonal AC inclined at 30° to the H.P. and the diagonal BO inclined at 45° to the V.P. and parallel to the H.P. Draw its projections.

UNIT-IV

8. Draw the projections of a pentagonal prism, base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the H.P., with the axis inclined at 45° to the V.P.

14M CO4
OR
9. A thin $30^{\circ}-60^{\circ}$ set square has its longest edge in the VP and inclined at 30° to HP. Its surface makes an angle of 45° with the VP. Draw the projections.

14M CO4

UNIT-V

10. Draw the front view, top view and right side view for the following figure

14M CO5

OR

11. Draw the isometric view for the following figure

(d)

(a)

\square
Code: 20A511T
I B.Tech. I Semester Supplementary Examinations Dec 2023 / Jan 2024

Problem Solving through C Programming

 (Common to All Branches)Max. Marks: 70

Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) What is the size of integer data type? CO1 L1
b) Differentiate do-while and while statements. $\mathrm{CO} \quad \mathrm{L} 2$
c) List the various storage classes in C. CO L1
d) What is a void pointer? CO4 L1
e) Give various modes of opening a file. CO5 L1

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) What are the various steps to solve a problem? Explain them by taking an example.
6M CO1 L1,L2
b) Draw a flow chart to find the largest of three numbers in C .

OR

3. a) Explain the Structure of C program.
b) How many keywords does C Language support? Explain.
6M CO1 L3

UNIT-II

4. a) Explain Nested if else statements with an example. 6M co2 L2
b) Write a C program to find the smallest number among three numbers.
6M CO2 L1,L3

OR

5. a) Describe about two dimensional arrays, initializing the two dimensional arrays and accessing elements in such arrays.
$6 \mathrm{M} \mathrm{CO} \quad \mathrm{L} 2$
b) Write a program to find an element present in a given array by using any one search technique.
6M CO2 L1,L3

UNIT-III

6. Explain briefly about string handling functions in C
with examples.

OR

7. a) Differentiate call by value and call by reference with
example

6M CO3 L1,L3
b) Illustrate the concept of recursion. 6M CO3 L2

UNIT-IV

8. a) Define a pointer. How to initialize and declare pointer
variables? Explain the same with examples 6 CM CO4 L1,L2
b) Explain how to pass one dimensional arrays to functions

6 M CO 4 L 2

OR

9. a) Write advantages and disadvantages of pointers
b) Write a C program to find the greatest and smallest element in an array using pointers.

6M CO4 L1,L3

UNIT-V
10. a) Differentiate between structures and unions, and write the syntax for nested structures

6M CO5 L1,L2
b) What is an enumerated data type? Explain with example.

6M CO5 L1,L2

OR

11. a) Explain the syntax for Nested structures. Describe Nested structures with an example.

6M co5 L2
b) Write a C program to reverse the contents of a file

6M CO5 L1,L2

Hall Ticket Number : \square

Code: 20AC11T

I B.Tech. I Semester Supplementary Examinations Dec 2023 / Jan 2024

Algebra and Calculus

(Common to All Branches)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) Define the rank of the Matrix
b) Define index and signature of a Quadratic form

e) Define Gamma function

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) そeduce the matrix tg Echelon form and find its rank

$$
\left[\left.\begin{array}{cccc}
-1 & -3 & 3 & -1 \\
1 & 1 & -1 & 0 \\
2 & -5 & 2 & -3 \\
-1 & 1 & 0 & 1
\end{array} \right\rvert\,\right.
$$

6M CO1
b) Investigate the values of $\quad \geqslant$ equations
$2 x+3 y+5 z=9,7 x+3 y-2 z=\delta^{\lambda}, \underset{2 x+3 y^{+} \lambda z=\mu, h i t h e ~ t h a t ~ t h e ~}{\text { and }}$
(i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.

6M CO1 L3

OR

3. Find for lat value o^{f} $x+2 y+4 z={ }_{\lambda, ~}^{w l}+4 y+10 z={ }_{\lambda}^{s_{2}}{ }^{\circ} h a v \epsilon_{a}^{\lambda t h}$ solution and solve them completely in each cas e.

UNIT-II

4. Ste $\quad \begin{array}{r}r \\ \text { ate } \\ 4^{\prime d} \\ \text { ve }\end{array}$ rify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{cc}1 & 4 \\ 2 & 3\end{array}\right]$ and hence find A^{4}.

OR

5. If $A=\left[\begin{array}{rrr}3 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$ then finc I the matrix P (model matrix)
which transforms the matrix A to a Diagonal matrix.
12M CO2 L3

UNIT-III

6. a) Using Maclaurin's series, expand powers of x. 6 M CO3 L3
b) $\begin{aligned} & \mathrm{J} \text { sing Maclaurin's sealue of } \\ & =\text { ind the minirrum }\end{aligned}$ $x+y+z=3 a \quad x^{-}+y^{-}+z^{-9}{ }^{-9}$

OR

7. a) If
 6M CO3 L5
b) $\begin{aligned} & \text { If } x+y+z-u, ~ \\ & \text { Find the maximul }\end{aligned}$ $x+y+z=a$ $x \cdots y=z=$ un $6 \mathrm{M} \mathrm{CO3} \mathrm{~L} 3$

OR
8. Evaluate $\int_{0}^{-c} \int_{0}^{-a} \int_{0}^{x+y} e^{x+y+z=d=d y d x}$

UNIT-V
10. a) Show that ${ }_{\Gamma}^{{ }^{a} \boldsymbol{f}_{\substack{1 \\ 2}} \boldsymbol{f}_{0}^{x+}=V_{\bar{\pi}}^{e x}}$

12M CO4 L5
uru
6 M CO3 L3

Code: 20AC12T
| B.Tech. I Semester Supplementary Examinations Dec 2023 / Jan 2024

Applied Physics

(Common to EEE, ECE and Al\&ML)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) State Principle of Superposition theorem CO1 L2
b) What is dielectric constant and susceptibility CO2 L1
c) What is optical fiber CO3 L1
d) What is semiconductor and give examples $\quad \mathrm{CO}$ L1
e) Write any two properties of superconductors CO5 L1

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
Marks CO BL

UNIT-I

2. Describe the single slit Fraunhofer diffraction and its intensity

12M CO1 L2
OR
3. a) What is polarization and mention types

4M CO1 L1
b) Describe the construction and working of Nicol prism

8M CO1 L2
4. a) What is electric dipole moment and write expression

3M CO2 L1
b) Deduce the ionic polarizability of dielectric

9M CO2 L4
5. a) Define magnetic dipole moment
b) Derive dipole moments of magnetic material

2M CO2 L1
10M CO2 L3
UNIT-III
6. Deduce the expression for acceptance angle and numerical aperture $\quad 12 \mathrm{M} \quad \mathrm{CO} \quad$ L4
7. a) Explain the construction of optical fiber

4 M CO3 L2
b) Describe the optical fiber communication system

8M CO3 L2
UNIT-IV
8. State Hall effect and derive Hall co-efficient

12M CO4 L3
OR
9. a) Explain intrinsic semiconductor

6 M CO4 L2
b) Derive Fermi energy in intrinsic semiconductor 6M CO4 L3

UNIT-V

10.

a) What is superconductor
2M CO5 L
b) Explain Josephson effect and V-I characteristics
10M CO5 L2

OR
$\begin{array}{llll}\text { 11. a) Explain basic principles of nanomaterials } & 6 \mathrm{M} & \mathrm{CO} 5 & \mathrm{~L} 2 \\ \text { b) Narrate the ball milling synthesis of nanomaterials } & 6 \mathrm{M} & \mathrm{CO} 5 & \mathrm{~L} 3\end{array}$

