	На	all Ticket Number :														
														R-23		
	Co	de: 23AHS15T B.Tech. L	Semest	er Si	ınnle	-mei	ntar	v Fy	am	ina	lions	luly S	2024			
		D.10011.11	30111031			erin				II IG	110113	JOIY 2	LUZ-T			
			(Comm		_		_	-		I CS	E(AI))					
	Mo	ıx. Marks: 70				****	****						Tim	ne: 3 H	lours	
	Not	e: 1. Question Pape	er consist	s of tv	vo pa	arts (P	art-A	\ and	d Pa	rt-B)					
		2. In Part-A, each	n questio	n carr	ies T	wo m	arks									
		3. Answer ALL th	ne questi	ons in	Part			rt-B								
				<i>(</i>	omn	<u>PAR</u> ulsor		octic	.n.\							
1	Λne	wer <i>all</i> the follow	wina sha							10Y	2 - 1	ONA.	١		СО	BL
			_			oi qu	icsti	UHS	(10/		ZOIVI ,	,			
		efine principle of				tion									CO1	L1
b)		ame the types of	-	-			cc			1.	. ((!				CO1	L1
C,		hat is a Bravais	iattice?	ivan	ne tr	ne an	nere	ent s	spac	ce ia	attices	s in ti	ne		000	1.4
۱,		ibic system.	with NA	illor	امطاد	200 (1 0	0)	in a	uhia	> 0F) (0	tal				L1
d)		ustrate the plane				•		•		ubic	ClyS	lai.				L2
e)		efine dielectric p		=	and	Susc	epti	DIIIU	у.						CO3	L1
f		ustrate the hyste		•												L4
g		st the properties								_				(CO4	L1
h)		ecall Fermi -Dira										energ	Jy.		CO4	L1
i)) De	escribe extrinsic	semico	ndud	ctors	and	l nar	ne t	hei	r typ	es.			(CO5	L2
j)) Di	scuss briefly the	drift cu	rren	t?										CO5	L2
	_					PAR				_	•.					
	Α	nswer <i>five</i> questio	ons by ch	IOOSII	ng oı	ne qu	estic	n tr	om e	each	unit (5 X 1		0 Mark ⁄larks	cs) CO	BL
						UNI	T_I						IV	laiks	CO	DL
2.	a)	Discuss the	theory	of	Nev			 rina	s '	with	rel	evan	t			
	ω,	diagram.		0.			•	9	•			o v ai i	•	7M	CO1	12
	b)	Newton rings	formed	hv	sod	ium	liah	t he	etwe	en.	flat	alas	3		001	
	.,	plate and a cor		•			_					•				
		order of dark r							•							
		that of 40th ring	J.											3M	CO1	L3
						OI	R									
3.	a)	Qualitatively di	scuss r	esol	vina	pow	ver o	of a	ratir	ng v	vith a	nea	t			
	,	diagram.			3	•		J		J				5M	CO1	L4
	b)	Describe polari	ization l	by d	oubl	e ref	fract	ion						5M	CO1	L2

2.

3.

		Code UNIT-II	e: 23AH\$	815T	
4.		Assess the packing factors of FCC and BCC crystals and	4014		
		decide which is closely packed.	10M	CO2	L5
		OR			
5.		Discuss Bragg's law and demonstrate X-ray diffractometer. UNIT-III	10M	CO2	L3
6.		Evaluate Lorentz internal field in a solid dielectric.	10M	CO3	L5
		OR			
7.	a)	Discuss para, dia and ferromagnetic materials with examples.	6M	CO3	L4
	b)	Discuss briefly on Ferrites.	4M	CO3	L2
		UNIT-IV			
8.	a)	Decide whether the energy of a particle trapped in one			
		dimensional infinite potential well is quantized by deriving			
		the expression for its energy.	/IVI	CO4	L5
	b)	Summarize the physical significance of wavefunction.	3M	CO4	L2
		OR			
9.	a)	Discuss the merits and demerits of classical free electron			
		theory.	6M	CO4	L2
	b)	List the main postulates of Quantum free electron theory.	4M	CO4	L1
		UNIT-V			
10.		Illustrate and analyze the dependance of Fermi energy on			

*** End ***

OR

carrier concentration and temperature in n type semiconductor.

11. a) Explain Hall effect and deduce the expression for Hall

b) List any three applications of Hall effect.

voltage.

10M CO₅ L₄

7M CO5 L2

3M CO5 L1

	Hall Ticket Number :			
	Code: 23A0312T	R-23		
	B.Tech. I Semester Supplementary Examinations July 2024	4		
	Engineering Graphics			
	(Common to All Branches)	m o. 2 I I	01.150	
	Max. Marks: 70 *******	me: 3 H	OUIS	
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 14 = 70$	Marks) Marks	CO	RI
	UNIT-I	Marks	00	
1.	<u> </u>			
	directrix as 50mm. Also draw normal and tangent to the curve,			
	at a point 40mm from the directrix.	14M	1	2
	OR			
2.	Construct a scale to be used with a map, the scale of which			
	is 1 cm = 500 m. The maximum length to be read is 5 km.			
	Mark on the scale, a distance of 3.85 km.	14M	1	3
	UNIT-II			
3.	A point A is 20 mm above the HP and 50mm in front of the VP.			
	Another point B is 40mm below the HP and 15 mm behind the			
	VP. The distance between the projectors of the points,			
	measured parallel to xy, is 75mm. Draw the projections of the			
	points. Draw lines joining their FVs and TVs.	14M	2	3
	OR			
4.	The mid point of a straight line AB is 60mm above HP and			
	50mm in front of VP. The line measures 80mm long and			
	inclined at 300 to HP and 450 to VP. Draw its projections.	14M	2	3
	UNIT-III			
5.	Draw the projections of a circle of 5 cm diameter, having its			
	plane vertical and inclined at 30° to the VP. Its center is 3 cm			
	above the HP and 2 cm in front of the VP	14M	3	3
	OR			
6.	A triangular prism of base 30 mm side and axis 50 mm long,			
	is resting on HP on one of its bases, with a face perpendicular			
	to VP. Draw the projections of the solid.	14M	3	3
	UNIT-IV			
7.	A hexagonal prism of side of base 30 mm and length of axis			
	75 mm, is resting on a corner of its base on HP, with the			
	longer edge containing that corner, inclined to HP at 30°. It is			
	cut by a section plane parallel to HP and passing through the			
	mid-point of the axis. Draw the front and sectional top views	4 45 -		
	of the solid.	14M	4	4
		Page :	1 of 2	

Code: 23A0312T

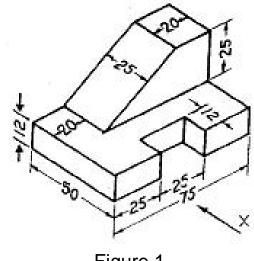
OR

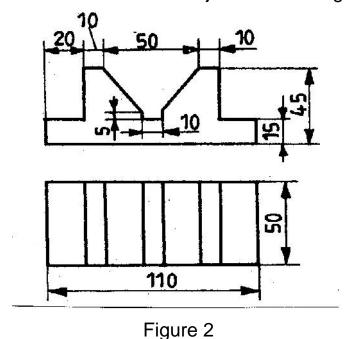
8. A hexagonal prism of side of base 20 mm and length of axis 50 mm is kept on the ground on its base such that two opposite sides of the base are parallel to the VP. It is cut by an AIP inclined at 45° to the HP and passing through one of the top corners of the prism. Draw the development of the cut prism.

14M 4 4

UNIT-V

9. Draw three views of the block shown pictorially in figure 1 according to first angle projection.




Figure 1

OR

14M

5 4

10. Draw the isometric view of the object shown in figure 2.

*** End ***

14M 5

		Hall	Ticket Number :			1				
	C	code	e: 23A0511T	R-23						
			B.Tech. I Semester Supplementary Examinations July 2024 Introduction to Programming (Common to All Branches)							
	٨	Λax.		ne: 3 H	ours					
	N		 Question Paper consists of two parts (Part-A and Part-B) In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 							
			PART-A							
			(Compulsory question)		_					
			all the following short answer questions (10 X 2 = 20M) ferent types of memories in computer systems.		С	O E				
,			the properties of an algorithm.			1				
•			e control structures in C.			2				
,			are the difference between entry-controlled and exit-controlled sta	temen	ts	2				
-		_	array. Write the syntax for the declaration of initialization of the 2			3				
f)	Ex	plai	n various parameter passing methods in C.			3				
•	·									
•			e functions used for dynamic memory allocation in C.			4				
,		•	n various text file opening modes			5				
j)	VV	nie i	the purpose of fseek() with example PART-B			5				
		A	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 10 = 50 \text{ N}$							
			LINUT	Marks	СО	BL				
	2	2)	UNIT-I Explain in detail about computer hardware and software	5M	4	4				
	۷.	a) b)	Explain in detail about computer hardware and software. Write the pseudo-code for the conversion of temperature		1	1				
		D)	from Fahrenheit to Celsius	5M	1	1				
			OR	Oivi	Ī	į				
	3.	a)		5M	1	2				
	٠.	b)	Write algorithm and draw flowchart for finding the greatest	0		_				
		~)	number among three numbers. UNIT-II	5M	1	2				
	4	a)	Write a C program to print first n lines of Floyd's Triangle.							
		- .,	1							
			2 3							
			4 5 6	-· ·						
			78910	5M	2	2				
		b)	, e							
			number using switch-case execution.	5M	2	2				

Code: 23A0511T

OR

5.	a)	Write a program in C to find the prime numbers within a	5 N <i>A</i>	0	•
	L-X	range of numbers.	5M		2
	D)	Explain about different loop control statements in C UNIT-III	5M	2	2
6.	a)	Explain the following functions string handling functions.			
		i. strcmp() ii. strrev()	5M	3	2
	b)	Write C program to find the largest and smallest number among a list of integers.	5M	3	2
		OR			
7.	a)	Find an element in the given list along with position.	5M	3	2
	b)	Write C program to find the transpose of a matrix. Example	5M	3	2
		Given matrix Transpose of the matrix:			
		1 2 3 1 4			
		456 25			
		36			
0	٥)	UNIT-IV	<i>E</i> N <i>A</i>		_
8.			5M	4	2
	b)	Explain the meaning and purpose of the following: i. struct keyword ii. typedef keyword iii. sizeof operator	5M	4	2
		OR	JIVI	4	2
g	a)	Write a C program to read and print the book details using			
0.	u)	structures.	5M	4	2
	b)	Define a pointer. How to initialize and declare pointer			
	,	variable? Write a C program to find the sum of array element			
		values using a pointer.	5M	4	2
		UNIT-V			
10.	a)	Demonstrate the user defined function (single function) to			
		perform all athematic operations.	5M	5	2
	b)	Demonstrate the following functions through a sample			
		program that reads a file "test.txt".			
		i. ftell() ii. fseek() iii. rewind()	5M	5	2
		OR			
11.	a)	Write the syntax of the following file I/O functions and			
		Explain every option in each function with suitable example			
		i. fopen() ii. fclose() iii. fread() iv. fwrite()	6M	5	2
	b)	Explain about recursive function with an example. *** End ***	4M	5	2

Code: 23AHS11T	3	
B.Tech. I Semester Supplementary Examinations July 2024		
Linear Algebra and Calculus (Common to All Branches)		
,	3 Hours	
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B		
PART-A		
(Compulsory question) Answer <i>all</i> the following short answer questions (10 X 2 = 20M)	СО	В
Define Echelon form of a matrix. What is the rank of a matrix which is in	า	
Echelon form?	CO1	L
How do you find the inverse of a matrix by Gauss-Jordan method?	CO1	L
Show that the Eigen values of a triangular matrix are the just diagonal		
elements. Write the real symmetric matrix corresponding to the quadratic form	CO2	L
2(xy - yz + zx).	CO2	L
State Lagrange's mean value theorem.	CO3	L
State Taylor's theorem with Lagrange's form of remainder.	CO3	L
If $f(x, y) = x^2 y \sin(xy) - xy^2 \cos(xy)$ find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.		
	CO4	L
Write the properties of Jacobian.	CO4	L
Evaluate $\int_{-\infty}^{2} \int_{-\infty}^{3} xy^2 dx dy.$		
Evaluate J J xy axay:	CO5	L
$a \times y$		
Evaluate $\iiint_{0}^{\infty} (x + y + z) dz dy dx.$		
0 0 0		
PART-B	CO5	L
Answer <i>five</i> questions by choosing one question from each unit ($5 \times 10 = 50$ Mark		
Mar	ks CO)
UNIT-I . a) Solve the following system of equations by Gauss		
elimination method		
$x_1 - x_2 + x_3 + x_4 = 2$, $x_1 + x_2 - x_3 + x_4 = -4$,		
$x_1 + x_2 + x_3 - x_4 = 4, \ x_1 + x_2 + x_3 + x_4 = 0.$	M co1	1
$x_1 + x_2 + x_3 - x_4 = 7, x_1 + x_2 + x_3 + x_4 = 6$		
b) Solve the equations $x_1 + x_2 + x_3 + x_4 = 4, x_1 + x_2 + x_3 + x_4 = 6$		

Solve the following equations using Gauss Seidal iteration

10x + 2y + z = 9, x + 10y - z = -22, -2x + 3y + 10z = 22.

method correct up to four decimal places.

1.

3.

10M CO1 L3

UNIT-II

4. Find the characteristic equation of the matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$
 and hence compute A^{-1} .

Also find the matrix represented by

$$A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I.$$
 10M co2 L3

OR

5. Reduce the following quadratic form

$$3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$

into canonical form or sum of squares through orthogonal reduction and hence find the nature.

10M CO2 L3

UNIT-I

6. a) Verify Rolle's theorem for $f(x) = \frac{\sin x}{e^x}$ in (0, f)

5M CO3 L3

b) Verify the result of Cauchy's mean value theorem for the

functions \log_e^x and $\frac{1}{x}$ in [1,e].

5M co₃ L₃

OF

7. Verify Maclaurin's theorem for $f(x) = (1-x)^{\frac{3}{2}}$ with Lagrange's form of remainder up to three terms when x=1. 10M cos L3

8. If $u = \log(x^3 + y^3 + z^3 - 3xyz)$ show that

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$$

10M CO4 L2

OR

9. Examine the following functions for maxima and minima

$$f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$
.

10M CO4 L2

UNIT–I

10. a) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-y^2}} \sqrt{a^2-x^2-y^2} dx dy$.

5M CO5 L3

b) By changing into polar coordinates, evaluate

$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$$

5M CO₅ L₄

OR

11. Evaluate

$$\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^x} \log z dz dx dy.$$

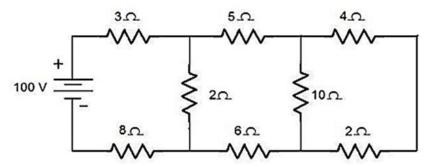
10M CO5 L3

*** End ***

Hall Ticket Number :		
Code: 23A0211T	R-23	
B.Tech. I Semester Supplementary Examinations July 2	2024	
Basic Electrical & Electronics Engineering		
(Common to EEE, ECE, CSE(AI) and AI&DS) Max. Marks: 70 **********	Time: 3 Hours	
Note: 1. Question Paper consists of two parts (Part-1 and Part-2) 2. Use separate Answer booklets for Part-1 and Part-2 3. Part-1 & Part-2 of question paper consists of Part-A & Part-B 4. In Part-A, each question carries One marks.		
5. Answer ALL the questions in Part-A and Part-B		
<u>PART-1</u> PART-A		
(Compulsory question)		
1. Answer all the following short answer questions $(5 \times 1 = 5M)$	CO	BL
a) State how does inductor and capacitor behaves when excited w	ith DC	
excitation.	1	L2
 b) Draw the power triangle and write the expression for power factor the triangle. 	or form 1	L2
c) What is the principle difference between DC Motor and generato	or? 2	L2
d) Which type of electricity billing is done for residential and comm loads?	nercial 3	L2
e) What is the purpose of electrical earthing?	3	L2
PART-B		
Answer five questions by choosing one question from each unit (3 x 1	0 = 30 Marks)	
	Marks CO	BL
UNIT-I		
2. a) Find the current through the 10 Ohm resistor in the circular shown in figure using Superposition theorem.	cuit	
$ \begin{array}{c c} 1 \Omega \\ \hline & \\ 10 \Omega \end{array} $ $ \begin{array}{c c} 5 \Omega \\ 4 A \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ $		
	5M 1	L3
b) A voltage v(t) = 177 sin (314 t + 10°) is applied to a circui	t. It	

OR

causes a steady-state current to flow, which is described by i(t) = $14.14 \sin(314t -20^{\circ})$. Determine the power factor and


average power delivered to the circuit.

5M

1 L3

Code: 23A0211T

3. a) Find the current through each branch by network reduction technique.

- 5M 1 L3
- b) A voltage $v(t)=150\text{sin}10^3t$ is applied to a series RLC circuit where R=40 , L=0.13H and C=10 μ F. Calculate
 - i) Power supplied by the source
 - ii) Reactive power supplied by the source
 - iii) Reactive power of the capacitor
 - iv) Reactive power of the inductor
 - v) Power factor.

5M 1 L3

UNIT-II

- 4. a) With neat sketch, Explain the construction and working of DC generator.
- 5M 2 L2
- b) Describe the constructional details of PMMC type instrument with the help of a neat diagram.
- 5M 2 L2

OR

- 5. a) Explain how a rotating magnetic field is produced in a three-phase induction motor.
- 5M 2 L2
- b) How can the sensitivity of a Wheatstone bridge be enhanced for precise measurements?
- 5M 2 L2

UNIT-III

- 6. a) Draw the layout of thermal power plant and explain the function of each component.
- 5M 3 L2
- b) Definition of "Tariff" and list out the objectives of tariff.
- 5M 3 L2

OR

- 7. a) Draw the layout of Wind power plant and explain the function of each component.
- 5M 3 L2
- b) Explain in detail about the two-part tariff and mention for which type of loads it is implemented?
- 5M 3 L2

Code: 23A0211T

I B.Tech. I Semester Regular Examinations January 2024

Basic Electrical & Electronics Engineering

(Common to EEE, ECE, CSE(AI) and AI&DS)

PART-2

<u>PART-A</u> (Compulsory question)

1	. An	swer all the following short answer questions $(5 \times 1 = 5M)$	CC	O E	3L		
a) Write the differences between CB, CE, and CC Amplifier Configurations.							
b) Draw the Diode Equivalent Circuit. Mention the applications of PN-							
	ju	inction diode		1	1		
C	;) E	xplain the Block diagram description of a dc power supply	,	2	2		
C	d) C	compare combinational and sequential circuits	;	3	2		
e	e) E	xplain the realization of SR flip-flop, JK flip-flop using D flip-flop	:	3	3		
	Δr	<u>PART-B</u> nswer <i>five</i> questions by choosing one question from each unit (3 x 10 = 30 N	larks	e)			
	ΛI	Mark		CO	BL		
		UNIT-I					
2.	a)	Derive the expression for Diffusion capacitance of a diode. 5l	Λ	1	1		
	b)	Zener diode can be used as a voltage regulator. Justify it. 5l	Λ	1	1		
		OR					
3.	a)	Derive Voltage gain and current gain expression for CB					
		configuration using transistor hybrid model 5l	V	1	1		
	b)	Explain about the Current components in a p-n diode. 51	V	1	1		
		UNIT-II					
4.	a)	Draw and explain the Block diagram of an electronic					
		instrumentation system 5		2	2		
	b)	Compare half wave, full wave and bridge rectifier circuits. 5	√I	2	2		
		OR					
5.	a)	Draw and Explain the working of simple Zener voltage	. 1				
	L۱	regulator 51	۷I	2	2		
	D)	Explain in detail the Block diagram of Public Address system, 51	M	2	3		
		UNIT-III	VI	2	3		
6	a)	Deduce the design procedure for sequential logic circuits					
0.	u)	and give the classification of sequential logic circuits.	M	3	2		
	b)	Design and construct MOD-5 synchronous counter using			_		
	,	JK flip flops 51	νI	3	2		

Code: 23A0211T

OR

- 7. a) Simplify the following Boolean expressions using the Boolean theorems.
 - (i) (A+B+C)(B'+C) + (A+D)(A'+C)
 - (ii) (ii) (A+B)(A+B')(A'+B)

5M 3 3

b) Obtain the characteristic equations of JK, SR, D and T flip-flops. Also explain excitation tables of all these flip-flops.

5M 3 3

*** End ***