	Hall Ticket Number :									
	Code: 23A0312T	R-23								
	B.Tech. I Semester Supplementary Examinations July 202	4								
	Engineering Graphics									
	(Common to All Branches)									
	Max. Marks: 70 Ti	ime: 3 H	ours							
	Answer <i>five</i> questions by choosing one question from each unit (5 x 14 = 70 Marks)									
		Marks	CO	BL						
	UNIT-I									
1.	Construct a parabola with the distance of the focus from the									
	directrix as 50mm. Also draw normal and tangent to the curve,	4 4 5 4		-						
	at a point 40mm from the directrix.	14M	1	2						
-	OR									
2.	Construct a scale to be used with a map, the scale of which									
	is 1 cm = 500 m. The maximum length to be read is 5 km.									
	Mark on the scale, a distance of 3.85 km.	14M	1	3						
•										
3.	A point A is 20 mm above the HP and 50mm in front of the VP.									
	Another point B is 40mm below the HP and 15 mm behind the VP. The distance between the projectors of the points,									
	measured parallel to xy, is 75mm. Draw the projections of the									
	points. Draw lines joining their FVs and TVs.	14M	2	3						
	OR		2	U						
4.	The mid point of a straight line AB is 60mm above HP and									
	50mm in front of VP. The line measures 80mm long and									
	inclined at 30° to HP and 45° to VP. Draw its projections.	14M	2	3						
			-	Ū						
5.	Draw the projections of a circle of 5 cm diameter, having its									
	plane vertical and inclined at 30° to the VP. Its center is 3 cm									
	above the HP and 2 cm in front of the VP	14M	3	3						
	OR									
6.	A triangular prism of base 30 mm side and axis 50 mm long,									
	is resting on HP on one of its bases, with a face perpendicular									
	to VP. Draw the projections of the solid.	14M	3	3						
	UNIT-IV									
7.	A hexagonal prism of side of base 30 mm and length of axis									
	75 mm, is resting on a corner of its base on HP, with the									
	longer edge containing that corner, inclined to HP at 30 ⁰ . It is									
	cut by a section plane parallel to HP and passing through the									
	mid-point of the axis. Draw the front and sectional top views									
	of the solid.	14M	4	4						
		Deee	1 - 1 - 1							

UNIT-V

8. A hexagonal prism of side of base 20 mm and length of axis 50 mm is kept on the ground on its base such that two opposite sides of the base are parallel to the VP. It is cut by an AIP inclined at 45^o to the HP and passing through one of the top corners of the prism. Draw the development of the cut prism.

14M 4 4

9. Draw three views of the block shown pictorially in figure 1 according to first angle projection.

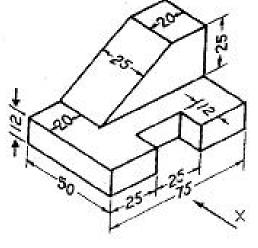
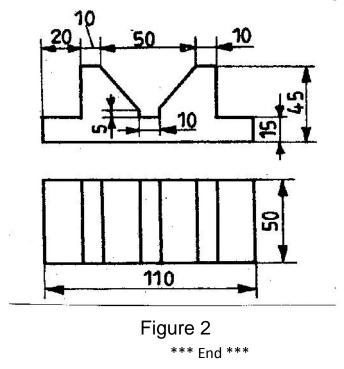



Figure 1

14M 5 4

OR

10. Draw the isometric view of the object shown in figure 2.

14M 5 4

		Hall	Ticket Number :			
	Ċ	`ode	: 23A0511T	R-23		
		Joue	B.Tech. I Semester Supplementary Examinations July 2024			
			Introduction to Programming			
		100	(Common to All Branches) Marks: 70 Tir	ne: 3 H	0.110	
	N	nux.	Marks. 70 III ******	пе. 5 п	OOIS	
	Ν		1. Question Paper consists of two parts (Part-A and Part-B)			
			 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 			
			PART-A			
			(Compulsory question)			
1.4	۹ns	wer	all the following short answer questions (10 X 2 = 20M)		со	BL
a)	Lis	st di	ferent types of memories in computer systems.		1	1
b)	W	rite	he properties of an algorithm.		1	1
c)	Lis	st th	e control structures in C.		2	. 1
d)		-	are the difference between entry-controlled and exit-controlled sta			
e)			array. Write the syntax for the declaration of initialization of the 2	D array	-	
f)		-	n various parameter passing methods in C.		3	
g) h)		-	are the differences between arrays and structures. e functions used for dynamic memory allocation in C.		4 4	
i)			n various text file opening modes		4 5	
j)		•	he purpose of fseek() with example		5	
.,			PART-B		-	
		A	Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 10 = 50$ N	Marks) Marks	со	BL
			UNIT-I	Marko	00	
	2.	a)	Explain in detail about computer hardware and software.	5M	1	1
		b)	Write the pseudo-code for the conversion of temperature			•
		- /	from Fahrenheit to Celsius	5M	1	1
			OR			
	3.	a)	Explain in detail about data types in C	5M	1	2
		b)	Write algorithm and draw flowchart for finding the greatest			
			number among three numbers.	5M	1	2
			UNIT–II			
	4.	a)	Write a C program to print first n lines of Floyd's Triangle.			
			1 2 3			
			456			
			78910	5M	2	2
		b)	Demonstrate the name of the day for the given week			
		-	number using switch-case execution.	5M	2	2

Page **1** of **2**

Code: 23A0511T

2

		ÖK							
5.	a)	Write a program in C to find the prime numbers within a range of numbers.	5M	2	2				
	b)	-							
	D)	Explain about different loop control statements in C	5M	2	2				
		UNIT-III							
6.	6. a) Explain the following functions string handling functions.								
		i. strcmp() ii. strrev()	5M	3	2				
	b)	Write C program to find the largest and smallest number							
		among a list of integers.							
		OR							
7.	a)	Find an element in the given list along with position.	5M	3	2				
	b)	Write C program to find the transpose of a matrix.	•	U	-				
	0)	Example	5M	3	2				
		Given matrix Transpose of the matrix:	•	U	2				
		1 2 3 1 4							
		456 25							
		36							
		UNIT–IV							
8.	a)	Differentiate structures and unions.	5M	4	2				
	b)	Explain the meaning and purpose of the following:							
	,	i. struct keyword ii. typedef keyword iii. sizeof operator	5M	4	2				
		OR	-	•	-				
9	a)	Write a C program to read and print the book details using							
0.	u)	structures.	5M	4	2				
	b)	Define a pointer. How to initialize and declare pointer							
	~)	variable? Write a C program to find the sum of array element							
		values using a pointer.	5M	4	2				
		UNIT-V	0.01	т	2				
10	2)								
10.	a)	Demonstrate the user defined function (single function) to perform all athematic operations.	5M	-	0				
	ଜ)		JIVI	5	2				
	b)	Demonstrate the following functions through a sample							
		program that reads a file "test.txt".	~ • •						
		i. ftell() ii. fseek() iii. rewind()	5M	5	2				
		OR							
11.	a)	Write the syntax of the following file I/O functions and							
		Explain every option in each function with suitable example							
		i. fopen() ii. fclose() iii. fread() iv. fwrite()	6M	5	2				
	b)	Explain about recursive function with an example.	4M	5	2				
		*** End ***							
			Ροσο 2	of 7					

Hall Ticket Number :		
Code: 23AHS11T		
B.Tech. I Semester Supplementary Examinations July 2024		
Linear Algebra and Calculus (Common to All Branches)		
Max. Marks: 70 Time: 3	Hours	

PART-A		
(Compulsory question)	<u> </u>	וח
1. Answer all the following short answer questions $(10 \times 2 = 20 \text{ M})$	CO	BL
a) Define Echelon form of a matrix. What is the rank of a matrix which is in Echelon form?	CO1	L1
b) How do you find the inverse of a matrix by Gauss-Jordan method?	CO1	L1
c) Show that the Eigen values of a triangular matrix are the just diagonal		
elements.	CO2	L2
 d) Write the real symmetric matrix corresponding to the quadratic form 2(xy -yz + zx). 	CO2	L1
e) State Lagrange's mean value theorem.		L1
f) State Taylor's theorem with Lagrange's form of remainder.		L1
,	005	
g) If $f(x, y) = x^2 y \sin(xy) - xy^2 \cos(xy)$ find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.	CO4	L2
h) Write the properties of Jacobian.	CO4	L1
i) Evaluate $\int_{1}^{2} \int_{1}^{3} xy^2 dx dy$.	CO5	L2
Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{y} (x + y + z) dz dy dx.$		
j)	CO5	L2
<u>PART-B</u>	005	LZ
Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 10 = 50$ Marks Marks		BL
UNIT-I		DL
 a) Solve the following system of equations by Gauss elimination method 		
$x_1 - x_2 + x_3 + x_4 = 2, x_1 + x_2 - x_3 + x_4 = -4,$		
$x_1 + x_2 + x_3 - x_4 = 4, \ x_1 + x_2 + x_3 + x_4 = 0.$ 6M	CO1	L3
b) Solve the equations		
x + 2y + 3z = 0, 3x + 4y + 4z = 0, 7x + 10y + 12z = 0 4M	CO1	L3
OR		
 Solve the following equations using Gauss Seidal iteration method correct up to four decimal places. 		

$$10x + 2y + z = 9$$
, $x + 10y - z = -22$, $-2x + 3y + 10z = 22$. 10M col L3

Page **1** of **2**

UNIT-II
4. Find the characteristic equation of the matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$
and hence compute A^{-1} .
Also find the matrix represented by
 $A^{1} - 5A^{2} + 7A^{2} - 3A^{2} + A^{4} - 5A^{3} + 8A^{2} - 2A + I$.
OR
5. Reduce the following quadratic form
 $3x_{1}^{2} + 3x_{2}^{2} + 3x_{3}^{2} + 2x_{1}x_{2} + 2x_{1}x_{3} - 2x_{2}x_{3}$
into canonical form or sum of squares through orthogonal
reduction and hence find the nature.
UNIT-I
6. a) Verify Rolle's theorem for $f(x) = \frac{\sin x}{e^{x}}$ in $(0, f)$
b) Verify the result of Cauchy's mean value theorem for the
functions \log_{e}^{x} and $\frac{1}{x}$ in [1,e].
OR
7. Verify Maclaurin's theorem for $f(x) = (1 - x)^{2}$ with
Lagrange's form of remainder up to three terms when $x=t$.
OR
7. Verify Maclaurin's theorem for $f(x) = (1 - x)^{2}$ with
Lagrange's form of remainder up to three terms when $x=t$.
OR
9. Examine the following functions for maxima and minima
 $f(x, y) = x^{4} + y^{4} - 2x^{2} + 4xy - 2y^{2}$.
10. a) Evaluate $\int_{0}^{x} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} dxdy$.
b) By changing into polar coordinates, evaluate
 $\int_{0}^{\infty} \int_{0}^{x} e^{-(x^{2} + y^{2})} dxdy$.
5M cos L3
OR
11. Evaluate
 $\int_{1}^{x} \int_{1}^{1} \log zdzdxdy$.
 $\int_{1}^{x} H = \int_{1}^{x} \int_{1}^{x} \log zdzdxdy$.
 $\int_{1}^{x} H = \int_{1}^{x} \int_{1}^{x} \log zdzdxdy$.

Г

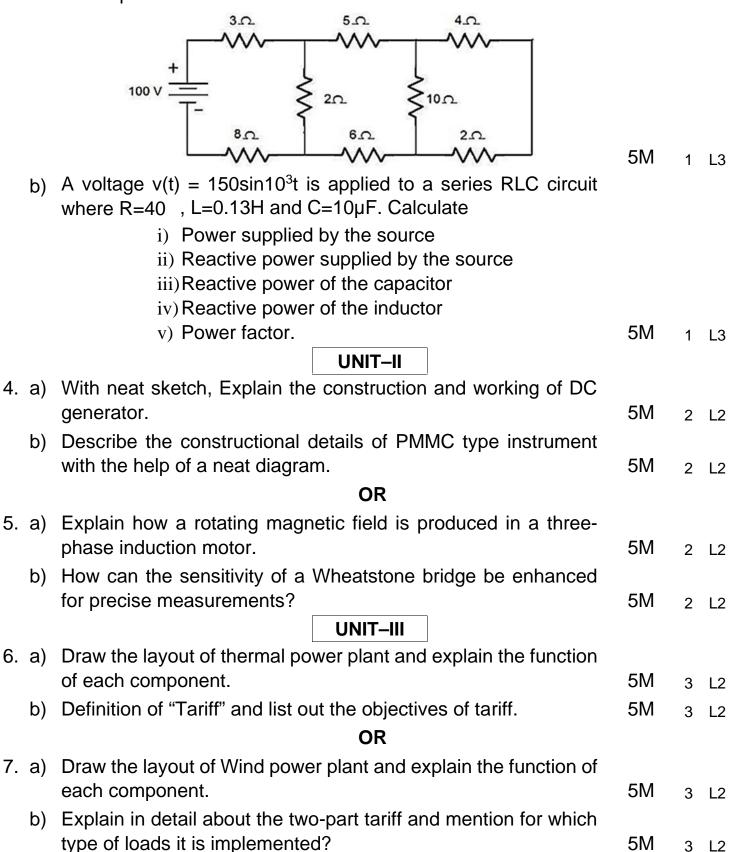
					(1	1			
	Hall Ticket Number :													
	Code: 23A0211T				<u>.</u>	<u> </u>							R-23	
	B.Tech. I Se	eme	ester	Sup	ople	ment	ary	Exc	ami	nati	ons	July 2024		
				•	•	Elect						•		
	(0	Com	mor	n to I	EEE,	ECE, (CSE((AI)	and	d Al	&DS)		
	Max. Marks: 70				*	*****	**					Time	e: 3 Hours	
	Note: 1. Question Paper	con	sists	of tv	vo pa	arts (P	art-1	L an	d Pa	rt-2)			
	2. Use separate A	nswe	er bo	oklet	ts for	Part-	1 an	d P	art-2	2				
	3. Part-1 & Part-2	of q	uesti	on p	aper	consis	sts o	f Pa	rt-A	& P	art-E	3		
	4. In Part-A, each	ques	tion	carri	ies O	ne ma	rks.							
	5. Answer ALL the	que	stior	ns in	Part	- A and	Par	t-B						
		<u>P</u> /	ART-	<u>1</u>										
				(0)		PART-	_							
				•	-	Isory	-		-				00	
	Answer all the followin	•				•			``			= 5M)	CO	BL
a)	State how does indu	ctor	and	d ca	paci	itor be	ehav	ves	wh	en	exci	ited with D	С	
	excitation.												1	L2
b)	Draw the power trian	ale	and	writ	te th	e exc	ores	sio	n fc	or po	we	r factor forr	n	
,	the triangle.	0											1	L2
c)	What is the principle	diff	oror	nco k	notu	ioon I		Mo	tor	and	aor	norator?	2	 L2
,											•		_	LZ
d)	Which type of electri	icity	billi	ng i	s do	one fo	or re	esic	lent	ial a	and	commercia	al	
	loads?												3	L2
e)	What is the purpose	of e	lect	rical	ear	thing	?						3	L2
					ļ	PART-	B							
	Answer <i>five</i> question	s bv	cho	osin	a on	e aues	stion	h fro	om e	ach	unit	$(3 \times 10 = 30)$) Marks)	

Answer five questions by choosing one question from each unit ($3 \times 10 = 30$ Marks)

Marks CO BL

UNIT-I

2. a) Find the current through the 10 Ohm resistor in the circuit shown in figure using Superposition theorem.


> 5Ω 1Ω 10 Ω)4 A <15 Ω 2 V

b) A voltage $v(t) = 177 \sin (314 t + 10^{\circ})$ is applied to a circuit. It causes a steady-state current to flow, which is described by i(t) = 14.14 sin(314t -20°). Determine the power factor and average power delivered to the circuit. 5M 1 L3

5M

1 L3

3. a) Find the current through each branch by network reduction technique.

Basic Electrical & Electronics Engineering

(Common to EEE, ECE, CSE(AI) and AI&DS)

<u> PART-2</u>

PART-A (Compulsory guestion)

(Compulsory question)									
1. Answer all the following short answer questions $(5 \times 1 = 5M)$	(CO I	BL						
a) Write the differences between CB, CE, and CC Amplifier Configurations.									
b) Draw the Diode Equivalent Circuit. Mention the applications of PN-									
junction diode									
c) Explain the Block diagram description of a dc power supply		2	2						
d) Compare combinational and sequential circuits		3	2						
e) Explain the realization of SR flip-flop, JK flip-flop using D flip-flop		3	3						
PART-B									
Answer <i>five</i> questions by choosing one question from each unit (3 x 10 = 3	30 Mar	ks)							
	Marks	CO	BL						
UNIT–I									
2. a) Derive the expression for Diffusion capacitance of a diode.	5M	1	1						
b) Zener diode can be used as a voltage regulator. Justify it.	5M	1	1						
OR									
3. a) Derive Voltage gain and current gain expression for CB									
configuration using transistor hybrid model	5M	1	1						
b) Explain about the Current components in a p-n diode. 5M									
UNIT–II									
4. a) Draw and explain the Block diagram of an electronic									
instrumentation system	5M	2	2						
b) Compare half wave, full wave and bridge rectifier circuits.	5M	2	2						
OR									
5. a) Draw and Explain the working of simple Zener voltage									
regulator	5M	2	2						
b) Explain in detail the Block diagram of Public Address									
system,	5M	2	3						
UNIT–III									
6. a) Deduce the design procedure for sequential logic circuits									
and give the classification of sequential logic circuits.	5M	3	2						
b) Design and construct MOD-5 synchronous counter using									
JK flip flops	5M	3	2						

- 7. a) Simplify the following Boolean expressions using the Boolean theorems.
 - (i) (A+B+C) (B'+C) + (A+D) (A'+C)
 - (ii) (ii) (A+B) (A+B') (A'+B) 5M 3 3
 - b) Obtain the characteristic equations of JK, SR, D and T flipflops. Also explain excitation tables of all these flip-flops.
 5M 3 3

*** End ***

Hall Ticket Number :		
	R-23	
Code: 23AHS15T B.Tech. I Semester Supplementary Examinations July	2024	
Engineering Physics	2027	
(Common to EEE, ECE, AI&DS and CSE(AI))		
Max. Marks: 70 ********	Time: 3 Hours	
Note: 1. Question Paper consists of two parts (Part-A and Part-B)		
2. In Part-A, each question carries Two marks.		
3. Answer ALL the questions in Part-A and Part-B PART-A		
(Compulsory question)		
1. Answer all the following short answer questions $(10X = 20M)$) CO BL	-
a) Define principle of superposition.	CO1 L1	1
b) Name the types of optical polarization.	CO1 L1	1
c) What is a Bravais lattice? Name the different space lattices in t	the	
cubic system.	CO2 L1	I
d) Illustrate the plane with Miller indices (1, 0, 0) in cubic crystal.	CO2 L2	2
e) Define dielectric polarizability and susceptibility.	CO3 L1	I
f) Illustrate the hysteresis loop.	CO3 L4	1
 g) List the properties of wave function. 	CO4 L1	I
h) Recall Fermi -Dirac distribution function and define Fermi ener	'gy. CO4 L1	I
 Describe extrinsic semiconductors and name their types. 	CO5 L2	2
j) Discuss briefly the drift current?	CO5 L2	2
PART-B		
Answer five questions by choosing one question from each unit (5 x $^{\prime}$	-	BL
UNIT-I		JC
2. a) Discuss the theory of Newton's rings with relevan	nt	
diagram.	7M co1 l	L2
b) Newton rings formed by sodium light between flat glas	S	
plate and a convex lens are viewed normally. Calculate th	1e	
order of dark ring which will have double the diameter of		
that of 40 th ring.	3M CO1 I	L3
OR		
3. a) Qualitatively discuss resolving power of grating with a new		
diagram.		L4
b) Describe polarization by double refraction.	5M CO1 I	L2

			e: 23AHS	5151	
		UNIT-II			
4.		Assess the packing factors of FCC and BCC crystals and			
		decide which is closely packed.	10M	CO2	L5
		OR			
5.		Discuss Bragg's law and demonstrate X-ray diffractometer.	10M	CO2	L3
		UNIT-III			
6.		Evaluate Lorentz internal field in a solid dielectric.	10M	CO3	L5
		OR			
7.	a)	Discuss para, dia and ferromagnetic materials with examples.	6M	CO3	L4
	b)	Discuss briefly on Ferrites.	4M	CO3	L2
		UNIT-IV			
8.	a)	Decide whether the energy of a particle trapped in one			
		dimensional infinite potential well is quantized by deriving			
		the expression for its energy.	7M	CO4	L5
	b)	Summarize the physical significance of wavefunction.	ЗM	CO4	L2
		OR			
9.	a)	Discuss the merits and demerits of classical free electron			
		theory.	6M	CO4	L2
	b)	List the main postulates of Quantum free electron theory.	4M	CO4	L1
		UNIT-V			
10.		Illustrate and analyze the dependance of Fermi energy on			
		carrier concentration and temperature in n type semiconductor.	10M	CO5	L4
		OR			
11.	a)	Explain Hall effect and deduce the expression for Hall			
		voltage.	7M	CO5	L2
	b)	List any three applications of Hall effect.	ЗM	CO5	L1
		*** End ***			

End