Hall	Tick	et Number :	_
Code	: 5G	R-15	
		I B.Tech. II Semester Regular Examinations June 2016	
		Technical English	
May	Ma	(Common to All Branches) rks: 70 Time: 3 Hou	rc
		Iffice units by choosing one question from each unit (5 x 14 = 70 Marks)	

		UNIT–I	
1.	a)	Do you believe that Modern Technology made human being lazy?	7M
	b)	Write in your own words on 'Mass Production'	7M
		OR	
2.	a)	Explain the advantages of Technology in about 50 words.	7M
	b)	Complete the sentences as directed.	
		i) He <i>unfolded</i> his full hand shirt in the exam hall. (write the antonym of the italicized word)	
		ii) He is a great patriot . (write the synonym of the bold word)	
		iii) She went to shop to buy a pen.(fill in the blank with 'stationary' / 'stationery')	
		iv) He accepted the gift money.(fill in the blank with a homonym of accept)	
		v) Kanhayya the strike at Delhi. (Fill in the blank with suitable phrasal verb)	
		vi) The students are (listening/hearing) a tractor noise.(Choose the right verb)	
		vii) I have to attend exam before final exam.(imagine and fill with prefix word)	7M
		UNIT–II	
3.	a)	Suggest few responsibilities to save climate from radiation.	7M
	b)	What is low pressure? How does it effect on climate?	7M
		OR	
4.	a)	Write with examples of the factors that cause climate change.	7M
	b)	What is Elnino and Lanina? Explain the condition of recent times.	7M
		UNIT–III	
5.	a)	In response to an advertisement, write a cover letter, possessed basic qualification of B.Tech., to Soft Tech Software Company for the position of Project Manager.	7M
	b)	What are Photovoltaic panels?-Explain how it works.	7M
		OR	
6.	a)	Why top countries use solar power? What are the benefits by using solar panels?	7M
	b)		
		i) I saw an angry tiger in the zoo. (Change into complex sentence)	
		ii) In spite of his poverty, he couldn't pay fee. (Change into compound sentence)iii) What is the (fair/fare) of shatavahana express ticket from here?	
		iv) I (alter/altar) my class due to busy schedule.	
		v) I (waist/waste) my money on movies.	
		vi) The passengers are (weighing/waiting) for the luggage.	
		vii) He took a (break/brake) for rest for a while.	7M

UNIT-IV

7.	a)	Write on 'water pollution' that caused by factory chemicals.	7M
	b)	What kind of measures to prevent soil erosion?	7M
		OR	
8.	a)	What are the methods to generate power form water?	7M
	b)	Keeping in view of Raman's, how can we prevent wastage of water?	7M
		UNIT–V	
9.	a)	Spiritual knowledge is the only thing that can destroy our miseries for ever-Explain.	10M
	b)	Write an essay that tells us about 'unattached'.	4M
		OR	
10.	a)	Define 'nature of work' in about 50 words.	10M
	b)	Fill in the blanks with suitable connotations.	
		i) He is (handicapped/disabled) to listen music.	
		ii) Her (childish/childlike) mentality irritates everyone.	
		iii) The flight ticket to Mumbai is (cheap/economical)	
		iv) She is very (curious/interest) to ask doubts.	4M
		10 M M	

Hall ⁻	Ticke	et Number :										
Code	e: 50	GC23		<u> </u>		K	1	1	1	R-15		
		IB.Tech.	I Semester	-				Ма	y/June	2016		
				i nginee Imon to 1	-	-		IT)				
		Aarks: 70	·							Time: 3 H		
Answ	er a	ll five units b	y choosing		estion fr	om eo	ach i	unit	(5 x 14	= 70 Marks	5)	
				l	JNIT–I							
1.	a)	Write a short gap semicon	not on Populat	tion inversi	on. Wha	at is me	ant by	/ Dire	ect and In	direct Band	7M	6 n
	b)	•	construction a	nd working	g of sem	icondua	cting L	_aser	?		7M	
	,			·	OR		U					
2.	a)		pressions for t Explain how tl					ctiona	I index c	hange of an	10M	
	b)		fractional cha Iding are 1.563	-			er if tl	he re	fractive in	ndices if the	4M	
				ι	JNIT-II							
3.	a)	Explain the diffraction.	principle, pro	cedure a	nd adva	antage	of P	owde	er metho	d of X-ray	10M	
	b)	A beam of 2	X-rays is incid	lent on a	NaCl c	rystal v	with la	attice	spacing	0.282 nm.		
		Calculate the glancing angle	wavelength of	X- rays if	the first	order E	Bragg	reflea	ction take	s place at a	4M	
		giancing ang	e 01 0° 33 .		OR						4101	
4.	a)	Write the pro	perties of Ultra	asonics ar		in how	do yc	ou pro	oduce Ult	trasonics by		
	,	•	method with a				-	-		-	10M	
	b)	Write the app	lications of Ult	rasonics in	non- de	structiv	e test	ing.			4M	
				ι	JNIT-III							
5.	a)		ount of Heiser eriment to brin	-	-		ple ar	nd ex	kplain the	e outline an	7M	
	b)	Derive the So	hrodinger time	independ		e equati	ion foi	r mat	ter waves	S.	7M	8 m
•	、				OR							
6.	a)		failures classio			-	- tu			a matantial	4M	
	b)	Discuss the r	(ronig-Penny n		JNIT-IV	n or an	electr	on in	a periodi	c potential.	10M	
7.	a)	Distinguish b	etween intrinsi				ctors				4M	
7.	a) b)	•	xplain the Hall						ne expres	sion for the	41/1	
	5)	hall coefficier	-	oncot with	n a neat			ive u			10M	
					OR							
8.	a)	•	rigin of magnet of magnetic m		t in magr	netic ma	aterial	ls and	d detail th	е	7M	
	b)	Discuss with material.	help of a neat	: diagram,	the hyst	teresis	loop d	obser	ved in fe	rromagnetic	7M	
				l	JNIT-V							
9.	a)	(ii) Mess	al Magnetic fiel iner effect omenon of BC								10M	
	b)	absolute zero	conductor with b. What would				-			x10 ³ A/m at 5 K	48.4	
		temperature?			OR						4M	
10.	a)	Discuss the c	letailed proced	ure to svnf		he nano	omate	rials	usina SO	L-GEL		
	ω)	method using	•								10M	
	b)	Discuss abou	t applications	of nanoma	terials in ***	the fiel	ld of e	energ	y and env	vironment.	4M	

Hall T	icke	t Number :										r	
Code :	5G	C12										R-15	
	I B.1	ech. I Seme	ester Su	pplem	ento	ary E	xam	ninat	tions	s Mc	ay/Jur	ne 2016	
				ngine	_			-					
		Les. 70	(Co	mmon	to Cl	e, Me	e, CS	E &	IT)			Time of 2 Hor	
Max. I Answe	-	five units by	choosir	na one	aues	tion	from) ea	chu	nit (5 x 14	Time: 3 Hou = 70Marks)	-
7 (115) (0			0110000	ig ono	*****			1001	011 0	(0 / 1 1	, orriand j	
					U	NIT-	·I						
1.	a)	How is hard			•							•	
		calculate the in ppm. 50 m					•		•				
		= 100 gms of		•	,u 14		0.00	, 101 C		. (10			7M
	b)	With the help	,		n, des	scribe	e the	reve	rse o	osmo	osis me	thod for the	
	,	desalination		•									7M
						OF	R						
2.	a)	Describe the	ion-excl	nange pi	ocess	s of s	often	ing fo	or wa	ter.			7M
	b)	Write a short	note on										
		(i) Break	point chl	orinatior) ,								
		(ii) Calgoi	n conditi	oning.									7M
						NIT–							
3.	a)	Discuss the v				•							7M
	b)	What are po			sors?) Des	scribe	e the	ana	lysis	of ure	ea by using	714
		electrochemi	ical sens	ors.									7M
٨		Evaloia the e	omnositi		iootio	OR		vonte		of th	o follou	ving collo (i)	
4.	a)	Explain the c Ni-Cd cell & (•			ns an	u au	vanta	ages	orth	e rollow	ing cells. (I)	7M
	b)	Define corros				sion a	and it	ts me	char	nism.			7M
	,			,		NIT-I							
5.	a)	Explain the s	ynthesis	of cond				s with	exa	mple	s.		7M
	b)	What are si	•							•		obtained by	
	,	hydrolyzing c								•	5	,	7M
						OF	R						
6.		Describe the	e metho	ds of pi	epara	ations	, pro	operti	ies a	and a	applicat	tions of the	
		following:											
		()	akelite,										
			una-S, ylon-6,6 8	&									
		· / ·	√C	~									14M

UNIT–IV

7.	a)	Describe the determination of calorific value of solid fuel using bomb calorimeter.	7M
	b)	The percentage composition of a sample of coal by weight was found to be: C = 76%, H = 5.2%, O = 12.8%, N = 2.7%, S = 1.2%, the remaining being ash. Calculate the minimum (i) Weight and (ii) volume at NTP of air necessary for complete combustion of 1 kg of coal and percentage composition by weight of dry products, if 50% excess air supplied.	7M
		OR	
8.	a)	Describe the Otto Hoffmann's method of manufacture of metallurgical coke	
		with a neat labeled diagram	7M
	b)	Write a note on Production and uses of Producer gas and Biogas.	7M
		UNIT-V	
9.	a)	What are refractories? Discuss any three properties of refractories.	7M
	b)	Explain theory of lubricants. Write any three applications of lubricants.	7M
		OR	
10.	a)	How can you classify the rocket propellants? What are the characteristics requires for good propellants.	7M
	b)	What is Portland cement? Explain hardening and setting of cement with various reactions involved in that process.	7M

Hall Ticket Number :						

Code: 5G522B

Max. Marks: 70

I B.Tech. II Semester Regular Examinations May/June 2016

Engineering Graphics -II

(Mechanical Engineering)

Time: 3 Hours

R-15

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

A square prism, base 40 mm side and height 65 mm, has its axis inclined at 45° to the H.P and has an edge of its base, on the H.P. and inclined at 30° to the V.P. draw its projections

OR

A pentagonal prism is resting on a corner of its base on the ground with a longer edge containing that corner inclined at 45° to the H.P. and the vertical plane containing that edge and the axis inclined at 30° to the V.P. Draw its projections. Base 40 mm side , height 65 mm

UNIT-II

3. A hexagonal pyramid, base 30 mm side and axis 65 mm long, is resting on its base on the H.P. with two edges parallel to the V.P. It is cut by a section plane, perpendicular to the V.P. inclined at 45^o to the H.P and intersecting the axis at a point 25 mm above the base. Draw the front view, sectional top view, sectional side view and true shape of section

OR

4. A tetrahedron of 65 mm long edges is lying on the H.P on one of its faces, with an edge perpendicular to the V.P. It is cut by section plane which is perpendicular to the V.P so that the true shape of the section is an isosceles triangle of base 50 mm long and altitude 40 mm. Find the inclination of the section plane with the H.P and draw the front view, sectional top view and true shape of the section

14M

UNIT-III

5. Draw the devoplement of lateral surface of the part "P" of the cylinder for which front view shown below.

6. A vertical cylinder of 60 mm diameter is penetrated by a horizontal square prism, base 40 mm side and their axes are bisecting each other. Draw their projections showing curves of intersections

14M

14M

14M

7M

7M

14M

UNIT–IV

- 7. a) Draw the isometric view of the frustum of the square pyramid. Base side 60 mm top side 40 mm and axis 50 mm
 - b) Draw the isometric view of the frustum of a cone with base dia 80 mm top dia 60 mm axis 60 mm

OR

8. Draw the isometric view of the object for which orthographic views are shown below

9. Isometric view of an object is shown below. Draw front view, top view and side view

14M

10. Draw the isometric view of the object for which orthographic views are shown below

Hall Tick	tet Number :	
Code: 5	GC24 R-15	
	I B.Tech. II Semester Regular Examinations May/June 2016	
	Engineering Mathematics-II (Common to All Branches)	
	larks: 70 Time: 3 Ho	
Answer c	all five units by choosing one question from each unit (5 x 14 = 70 Marks)
	UNIT–I	
1.	Evaluate the double integral $\iint_{R} xy dx dy$, where R is the region bounded by	
	the x-axis, the line y=2x and the parabola $y = \frac{x^2}{4a}$	14M
	OR	
2.	Evaluate $\iint_{P} (x+y)^2 dx dy$, where R is the parallelogram in the xy-plane with	
	vertices $(1,0)$, $(3,1)$, $(2,2)$, $(0,1)$ using the transformation u=x+y and v=x-2y	14M
	UNIT–II	
3.	Find the Laplace transform of the periodic function defined by the saw	
	tooth wave $f(t) = t$, $0 \le t \le a$, $f(t+a) = f(t)$. OR	14M
4.	Find the inverse Laplace transform of the following functions	
	a) $\frac{2(s+1)}{(s^2+2s+2)^2}$ b) $\log\left(\frac{s+c}{s+d}\right)$ where c, d are constants.	
		14M
-	UNIT-III	
5.	Find the solution of the initial value problem $y'' + 4y' + 13y = e^{-t}$, y(0) = 0, $y'(0) = 2$.	14M
	OR	14111
6.	Using convolution, solve the initial value problem $y'' + 9y = \sin 3t$,	
	y(0) = 0, y'(0) = 0.	14M
- 、		
7. a)		7M
b)	Show that $\nabla^2 \left(\frac{1}{r} \right) = 0$.	7M
	OR	
8.	Show that the vector field $\overline{F} = 2x(y^2 + z^3)\overline{i} + 2x^2y\overline{j} + 3x^2z^2\overline{k}$ is conservative.	
	Find its scalar potential and the work done in moving a particle from (-1, 2, 1) to (2, 3, 4).	14M
	UNIT-V	
9.		
•	Verify Green's theorem for $\int_C \left[(xy + y^2) dx + x^2 dy \right]$ where C is bounded by	
	y=x and y=x ² . OR	14M
10.	Verify Stoke's theorem for a vector field $\overline{F} = (2x - y)\overline{i} - yz^2\overline{j} - y^2z\overline{k}$ over the	
	upper half surface of $x^2 + y^2 + z^2 = 1$, bounded by its projection on the xy-plane.	14M

Hall Ticket Number :										
----------------------	--	--	--	--	--	--	--	--	--	--

Code: 5G521

Max. Marks: 70

I B.Tech. II Semester Regular Examinations June 2016

Engineering Mechanics-Dynamics

(Common to CE and ME)

Time: 3 Hours

R-15

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

- a) The greatest possible acceleration or deceleration that a train may have is a and its maximum speed is v. Find the minimum time in which the train can get from one station to the next, if the total distance is s.
 - b) A particle under constant deceleration is moving in a straight line and covers a distance of 20 m in first two seconds and 40 m in the next 5 seconds. Calculate the distance it covers in the subsequent 3 seconds and the total distance covered, before it comes to rest.

7M

7M

7M

7M

OR

- 2. a) An electric train which starts from one station is uniformly accelerated for the first 10 seconds, during which period it covers 150 metres. It then runs with constant speed until it is finally retarded uniformly in the last 40 metres. Calculate the maximum speed and the time taken over the journey to the next stopping station which is 600m form the previous station
 - b) A particle is projected with a velocity of 10m/s at an angle of elevation of 60°. Findi) The equation of the path of motion.
 - ii) The length of latus rectum of the path of motion
 - iii) Time required to cover the range.
 - iv) The length of range

UNIT-II

3. A flywheel rotating freely at the speed of 1750 rpm clockwise is provided with a counter clockwise torque, which is first applied at time t = 0 producing a counterclockwise acceleration $= 4.5 \text{ t rad/s}^2$. Determine the (i) time required to produce clockwise angular speed 950 rpm, (ii) time required to reverse direction of rotation, (iii) total number of revolutions during the first 14 s of movement. 14M

OR

4. A bicycle wheel of 0.89 m diameter rolls without slip at 18 rad/s angular velocity (Fig.1) If the angular acceleration becomes 13 rad/s², determine the velocity and the acceleration of point A on the tyre and B on the rim. The rim has diameter 0.78 m

UNIT-III

5. Using D'Alembert's principle, determine the tension in the string and acceleration of blocks A and B weighing 1500 N and 500 N connected by an inextensible string as shown in Fig.2 below. Assume pulleys as frictionless and weightless

Fig. 2 OR

6. A 750 N crate rests on a 500 N cart. The coefficient of friction between the crate and the cart is 0.3 and Between cart and the road is 0.2. If the cart is to be pulled by a force P such that the crate does not slip. Determine (a) the maximum allowable magnitude of P and (b) the corresponding acceleration of the cart.

7. Determine the constant force P that will give the system of bodies shown in Fig. 4 A velocity of 3 m/s after moving 4.5 m from rest. Coefficient of friction between the blocks and plane is 0.3. Pulleys are smooth.

14M

14M

8. A tennis ball strikes a smooth horizontal floor from a height h and is assumed to bounce a finite number of times. Derive the expression for the velocity of the ball after bouncing *n* times. Also determine the expression for total vertical distance travelled.

UNIT–V

9. A solid cylinder and a thin hoop of equal mass and radius are connected by a bar C_1C_2 as shown in Fig.5. If the assembly rolls down the incline without slip, determine the acceleration of the assembly and the tension in the bar.

Fig.5

14M

OR

10. A right circular homogeneous cylinder of mass M and diameter d is suspended from an inextensible cord wound around its periphery as shown in Fig. 6. Determine the acceleration of the mass centre C of the cylinder, when it is allowed a free fall. In this condition, what will be tension in the cord?

Fig.6 ***

	Ticke	et Number :	
Code:	5G	R-15	
		B.Tech. II Semester Regular Examinations May/June 2016	
		C Programming and Data Structures	
Max. I	Mar	(Common to All Branches) ks: 70 Time: 3 Hou	irc
		five units by choosing one question from each unit $(5 \times 14 = 70 \text{ Marks})$	12

		UNIT–I	
1.	a)	What is meant by a pointer? Explain about pointer to array.	71
	b)	Write a C program to sort element in an array using pointer to array.	71
		OR	
2.	a)	What do you mean by dynamic memory allocation?	71
	b)	Discuss the different dynamic memory allocation functions available in c.	71
		UNIT–II	
3.	a)	Explain file handling functions with syntax.	71
	b)	Write a C program to count the number of occurrences of a key word in an	
		input program.	71
		OR	
4.	a)	Explain Quick sort with the help of an example?	71
	b)	Write a C program to sort the elements using Quicksort.	71
		UNIT–III	
5.	a)	Explain stack with basic Operations (push and pop).	91
	b)	Convert the following infix expression into Postfix Expression A+B*C/D^E+(F+G)*H	51
		OR	
6.		Write an algorithm to insert and delete an element in a circular Queue.	14
		UNIT-IV	
7.		Write a C program to search an element in a list using linked list.	71
7.	a) b)	Write a C program to concatenate two linked lists.	71
	D)	OR	71
8.		Writ a C program to insert and delete an element in a given list using double	
0.		linked list.	14
		UNIT–V	
9.	a)	Define binary tree, complete binary tree and almost complete binary tree.	7
	b)	Explain various traversal techniques in a binary search tree	7
	·	OR	
	a)	Consider the set S= {15, 20, -4, 28, 2, 6, 9}, Draw the binary search tree T by	
10.		· · · · · · · · · · · · · · · · · · ·	
10.	,	taking keys in set S one at a time in the order assume the binary search tree is	
10.) b)	taking keys in set S one at a time in the order assume the binary search tree is initially empty. Write a recursive algorithm to search the element in a binary search tree.	7 7