M.C.A. Il Semester Regular Examinations June 2018 Computer Organization

UNIT-I

1. a) What is fixed point Representation? Explain with examples.
b) Find 2 's complement of the following
i) 10010
ii) 111000
iii) 0101010
iv) 111111
4M

OR

2. a) Assume $A=(+8)$ and $B=(+5)$. Multiply these two numbers using Booth algorithm. Show the step-by-step multiplication process.
b) Discuss three representations of Signed integers with suitable examples. 6M

UNIT-II

3. a) Analyze the memory hierarchy in terms of speed, size and Cost. 6M
b) Discuss about the mapping procedures of cache memory. 6 M

OR
4. a) What is associate memory? Explain with block diagram
b) Compare and contrast between Asynchronous DRAM and Synchronous DRAM. 4M

UNIT-III

5. a) Give the block diagram for register set in CPU. 6M
b) Explain the different types of addressing modes 6 M

OR

6. How computer instructions are classified? List and explain about them with examples.

UNIT-IV

7. a) Give and explain the control sequence required for branch instruction in the single bus architecture.
b) Distinguish between circular shift and arithmetic shift with proper example. 6M

OR
8. a) With neat diagram, explain three bus organization and write control sequence for the instruction ADD R1, R2, R3
b) Explain various phases of instruction cycle with an example 6 M UNIT-V
9. Explain with block diagram the basic organization of a microprogrammed control unit

OR

10. How the data transfer to and from peripherals is done? Discuss with neat diagrams and examples.
\square

M.C.A. Il Semester Regular Examinations June 2018 Data Structures

Max. Marks: 60

Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

1. a) Define a Data structure. Explain the classification of data structures each with an example.

6M
b) What is an algorithm? Explain the Big ' O ' notation with an example. 6 M OR
2. Write an algorithm to find the multiplication of two n X n matrices and find its time complexity.

UNIT-II

3. a) Write an algorithm to insert a number in the correct position in the previously sorted single dimensional array.
b) What is Queue? Write an algorithm to insert the item in Queue using arrays. 6M

OR

4. a) How to insert the element in the sorted single linked list and explain with an example.
b) Write the applications of linked list.
5. a) Write an algorithm for Bubble sort method.
b) Explain about Radix sort method with an example. 6 M

OR

6. Write an algorithm to search a key using Binary Search method and also find
all the possible occurrences of same key in the list.

UNIT-IV
7. a) Define a Binary Search Tree. Construct the Binary search tree for the following set of data.

$$
\{10,20,15,25,30,45,80,60\}
$$

b) Write the applications of a Binary Tree 6 M OR
8. Write algorithms for Preorder and Inorder traversal methods of a Binary Tree and explain each with an example. 12M
UNIT-V9. a) What is Graph? Explain about the traversal method of Graph with an example.8M
b) Explain about the applications of Graphs. 4M10. a) Write about Splay Trees.6M
b) Explain about Red Black Tree with an example. 6M
M.C.A. Il Semester Regular Examinations June 2018 Introduction to Web Programming
Max. Marks: 60
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

1. a) Explain briefly about any three web browsers.
b) Write short notes on the following
i) Web Servers ii) URL
2. a) Explain in detail about Hyper Text Transfer Protocol
b) Briefly explain the features of HTML 5 .

UNIT-II
3. a) Write an HTML form for user registration.
b) Explain following HTML tags
i) <form> ii)
4. a) Writhe HTML program to display the class time table.
b) What is form? Explain about various form elements.

UNIT-III

5 a) Explain the advantages of CSS.
b) What is CSS? Explain the ways by which CSS is included in the web page. 7M

OR

6 a) Explain color values in CSS. 6M
b) Explain how to create boxes and columns using CSS. 6M

UNIT-IV

$7 \quad$ Explain about the following
i) List Styles ii) Table layouts

OR

8 Briefly explain about frames and controls of CSS with example. 12M

UNIT-V

9 a) List the advantages and features of XML. 6M
b) Explain briefly about XML document structure. 6 M

OR

10 a) Explain briefly about document type definition with suitable example. 6M
b) Explain briefly about XSLT Style sheets 6M
\square
Code: 7P2B25

M.C.A. II Semester Regular Examinations June 2018
 Java Programming

Max. Marks: 60
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

1. a) Explain about Class, Objects and Methods in Java with an example.
b) The Object-Oriented thinking is analogous to viewing real world objects. Justify the statement with proper examples.

OR

2. a) Write a short note on string buffer and string builder.
b) Explain the use of Enumerated Types in Java. 6M

UNIT-II

3. a) What are the advantages/ disadvantages of using inheritance? Explain. 6M
b) Define Method Overriding. Explain how it is differ from Method Overloading. 6M

OR

4. Write a short note on the following:
a) Local inner classes
b) super keyword

UNIT-III

5. a) Discuss the variables in interface and extending interfaces. 6M
b) Make a comparison between the classes and interfaces. 6M

OR

6. a) Explain about CLASSPATH while using packages 6M
b) Illustrate with an example how a package can be imported to another program. 6M

UNIT-IV

7. a) Explain try, catch, throw and finally with an example. 6M
b) Illustrate how user defined exceptions can be created with an example 6 M

OR

8. a) Distinguish between multi-threading and multitasking 6M
b) Draw and explain the thread life cycle. 6M

UNIT-V

9. a) Discuss the Socket connection and simple client server program. 6M
b) Explain the File management using file class. 6M

OR

10. Write a short note on the following:
a) Byte streams
b) Binary input/output
c) random access file operations

M．C．A．Il Semester Regular Examinations June 2018

Numerical Methods
Max．Marks： 60
Time： 3 Hours
Answer all five units by choosing one question from each unit（ $5 \times 12=60$ Marks ）

UNIT－I

1．a）Perform five ite ${ }_{\text {atio }}$ ， Is isection method to obtain the smallest positive root of the equation $x^{3}-5 x+1=0$
b）of the equation
$\operatorname{Cos} x-x e x=0$.

OR

2．${ }^{\sim}$

 $x+y+z=5,3 x+3 y+4 z=20,2 x+y+3 z=13$

$4 x+y+z=2, x+5 y+3 z=-6, x+2 y+3 z=-4$ ．

OR

4．Solve the following equations by Relaxation method．
$3 x+2 y=5,2 x+3 y-z=4,-y+2 z=1$ ．
UNIT－III
5．Obtain the least squares straight line fit to the following data

$\cdots \mathrm{cos}$	0.2	0.4	0.6	0.8	1
	0.447	0.632	0.775	0.894	1

6．Two ranc rom $_{\text {ariab }}$ es have the regression lines with equations 3,2 26 and $6 x+v^{v=}=31$ ．Find the mean values and the correlation cterfient between $x \operatorname{ar}_{\text {Id }}^{y} y$ ．

UNIT－IV

7．State apr ${ }^{2}$ ．opriat ${ }^{3}$ interpolation formula which is to be used to calculate the values of ${ }_{e}{ }^{1.75}$ from the following data and hence evaluate it from the given data

荌品	1.7	1.8	1.9	2.0
\cdots 亿n－	5.474	6.050	6.686	7.389

8．Use Gauss forward interpolation formula to find $f(30)$ given that $f(21)=18.4708$ ， $f(25)=17.8144, f(29)=17.1070, f(33)=16.3432, f(37)=15.5154$ ．

b）U＇se Euler＇s method to find

OR

 1，$y^{\prime}(0)=$ o taking $\lambda=0.2$

M.C.A. Il Semester Regular Examinations June 2018 Operations Research

Time: 3 Hours
Max. Marks: 60
Answer all five units by choosing one question from each unit ($5 \times 12=60$ Marks) *********

UNIT-I

1. Use penalty (Big-M) method to Maximize $z=x_{1}-x_{2}$ subject to the constraints

$$
\begin{equation*}
2 x_{1}+x_{2} \geq 2, x_{1}+3 x_{2} \leq 3, x_{2} \leq 4 \tag{12M}
\end{equation*}
$$

OR
2. Apply principle of duality to solve the LPP Maximize $z=3 x_{1}-2 x_{2}$ subject to the constraints $x_{1}+x_{2} \leq 5, x_{2} \leq 4,1 \leq x_{2} \leq 6$ and $x_{1,} x_{2} \geq 0$

UNIT-II
3. Find the initial basic feasible solution of the following transportation problem by stepping stone method

Ware house \rightarrow Factory \downarrow	W_{1}	W_{2}	W_{3}	W_{4}	Factory Capacity
F_{1}	19	30	50	10	7
$\mathrm{~F}_{2}$	70	30	40	60	9
$\mathrm{~F}_{3}$	40	8	70	20	18
Ware house requirement	5	8	7	14	34
OR					

4. Explain transportation algorithm by MODI method with suitable example 12M

UNIT-III

5. a) Give the mathematical formulation of assignment problem
b) Explain how you sequence 2 jobs on m machines.

OR
6. There are five jobs to be assigned on 5 machines and associated cost matrix is as follows

Machines \rightarrow Jobs \downarrow	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{4}}$	$\mathbf{S}_{\mathbf{5}}$
$\mathbf{B}_{\mathbf{1}}$	4	6	7	5	11
$\mathbf{B}_{\mathbf{2}}$	7	3	6	9	5
$\mathbf{B}_{\mathbf{3}}$	8	5	4	6	9
$\mathbf{B}_{\mathbf{4}}$	9	12	7	11	10
$\mathbf{B}_{\mathbf{5}}$	7	5	9	8	11

find the optimum assignment and associated cost using assignment technique

UNIT-IV

7. Discuss the algebraic method of solving 2×2 game by taking suitable example

OR
8. Solve the following game using dominance principle

Player B
Player $A\left[\begin{array}{lllll}3 & 5 & 4 & 9 & 6 \\ 5 & 6 & 3 & 7 & 8 \\ 8 & 7 & 9 & 8 & 7 \\ 4 & 2 & 8 & 5 & 3\end{array}\right]$
UNIT-V
9. a) Write a short note on developing inventory model
b) Differentiate controlled variable and uncontrolled variables in inventory problem

OR
10. Find the EOQ for the following data annual usage $=1000$ pieces, cost per piece=Rs. 250, ordering cost=RS 6 per order, expecting cost=RS 4 per order, Inventory holding cost $=20 \%$ of average inventory material holding cost=Rs 1 per piece.

