Hall	Tick	et Number :							
Code	Code: 5P2B21								
		M.C.A. II Semester Supplementary Examinations June 2018							
		Computer Organization							
		arks: 60 Time: 3 Ho							
Ansv	wer	all five units by choosing one question from each unit (5 x 12 = 60 Mark	s)						
		UNIT–I							
1.	a)	What is fixed point Representation? Explain with examples.							
	b)								
		i) 10010 ii) 111000 iii) 0101010 iv) 111111	4M						
		OR							
2.	a)	Assume A = $(+8)$ and B = $(+5)$. Multiply these two numbers using Booth algorithm. Show the step-by-step multiplication process.	6M						
	b)	Discuss three representations of Signed integers with suitable examples.	6M						
	0)	Unit-II							
3.	a)	Analyze the memory hierarchy in terms of speed, size and Cost.	6M						
	b)	Discuss about the mapping procedures of cache memory.	6M						
		OR							
4.	a)	What is associate memory? Explain with block diagram	8M						
	b)	Compare and contrast between Asynchronous DRAM and Synchronous DRAM.	4M						
F	2)	UNIT-III	6M						
5.	a) b)	Give the block diagram for register set in CPU.							
	D)	Explain the different types of addressing modes OR							
6.		How computer instructions are classified? List and explain about them with							
0.		examples.	12M						
		UNIT–IV							
7.	a)	Give and explain the control sequence required for branch instruction in the							
	L)	single bus architecture.	6M						
	b)	Distinguish between circular shift and arithmetic shift with proper example. OR	6M						
8.	a)	With neat diagram, explain three bus organization and write control sequence							
0.	u)	for the instruction ADD R1, R2, R3	6M						
	b)	Explain various phases of instruction cycle with an example	6M						
		UNIT-V							
9.		Explain with block diagram the basic organization of a microprogrammed							
		control unit	12M						
10		OR How the data transfer to and from paripharals is dana? Discuss with post							
10.		How the data transfer to and from peripherals is done? Discuss with neat diagrams and examples.	12M						

Code	: 5P2	R-15							
Joue		4.C.A. II Semester Supplementary Examinations June 2018	•						
		Numerical Methods							
Max	Mai	rks: 60 Time: 3 Hou	irs						
		five units by choosing one question from each unit ($5 \times 12 = 60$ Marks							
		******	,						
		UNIT–I							
1.	a)	Perform five iter is sisection method to obtain the smallest positive root							
		of the equation $x_3 = 5x \pm 1 = 0$							
	b)	of the equation $\frac{1}{x^3} = \frac{1}{1}$ is in method to determine the root of the equation Use the Regular - Fe							
		$\cos x - xex = 0.$							
-		OR							
2.		record records recor							
		$x_0 = 0, x_1 = 1, x_2 = 1/2.$	12						
3.									
э.	a)	low 3 i by u UNIT-C s elimination method. Solve the foll (ing) quations is sing the 3 aus $x + y + z = 6, 3x + 3y + 4z = 20, 2x + y + 3z = 13$	6						
	ы)	serve the felt. Ing i quat one i strig the strive.	Ċ						
	b)	$S + y + z = 6_{M}x + 3y + 4z = 3y$ $t^{2}x + y + 3z = 4$ iteration method.	6						
		4x + y + z = 2, x + 5y + 2z = -6, x + 2y + 3z = -4.	6						
4.		OR Solve the following equations by Relaxation method.							
ч.		3x+2y=5, $2x+3y-z=4$, $-y+2z=1$.	12						
			12						
5.		Obtain the least squares straight line fit to the following data							
•		1000000000000000000000000000000000000							
		ain the 0.447 0.632 0.775 0.894 1	12						
		OR							
6.									
0.		Two ranges a_{riab} is have the regression lines with equations $3 \xrightarrow{2} 26$ and $6x + \frac{\sqrt{2}}{31}$. Find the mean values and the correlation $c_{berthelest}^{x+1,y}$							
		between $x = ar^{y} = y$.							
		UNIT-IV							
7.		State apropriate interpolation formula which is to be used to calculate the							
		values of $\frac{\sigma_{1.75}}{e}$ from the following data and hence evaluate it from the given data							
		1.7 1.8 1.9 2.0							
		5.474 6.050 6.686 7.389	12						
		OR							
8.		Use Gauss forward interpolation formula to find $f(30)$ given that $f(21)=18.4708$,							
		<i>f</i> (25)=17.8144, <i>f</i> (29)=17.1070, <i>f</i> (33)=16.3432, <i>f</i> (37)=15.5154.	12						
9.	a)	$solv_{\mathcal{Y}(0,2)} \stackrel{i_1}{=} x - y^{-i_1} y(0)$ $solv_{\mathcal{Y}(0,2)} \stackrel{i_1}{=} x - y^{-i_1} y(0)$ $solv_{\mathcal{Y}(0,2)} \stackrel{i_1}{=} x - y^{-i_1} y(0)$							
		$y(0.2) = x - y^{-1}y(0)$ $y(0.2)$	6						
	b)	Use Euler's method to find (x_{2}, y_{1}) , (x_{2}, y_{2}) given (x_{2}, y_{2}) $(x_{$							
		OR							
10.		Solve $\frac{(x - y)^2}{y'(0)} = 0$ using R-K method for $\frac{(x - y)^2}{y'(0)} = \frac{1}{y'(0)} = 0$. Using R-K method for $\frac{(x - y)^2}{y'(0)} = \frac{1}{y'(0)} = 0$.							
		$1, y'(0) = 0 \text{ taking } \lambda = 0.2. \qquad x = y(0)$	12						
		* * *							

Hall Tick	et Number :							[]	
Code: 5P	2C24		ł/_		1 I		R-15		
	M.C.A. II S	Semester S	Supple	mentar	y Exan	ninatio	ons June	e 2018	
		C	Operat	ions Re	search	า			
	arks: 60							Time: 3 Hours	
Answer al	ll five units k	by choosing	l one qu	Jestion ti ********	rom ea	ch uni	f (5 x 12 -	= 60 Marks)	
				UNIT	—I				
1.	Use penalt	y (Big-M) me	thod to N	<i>A</i> aximize	$z = x_1 - $	x_2 subj	ect to the	constraints	
	$2x_1 + x_2 \ge 2$	2, $x_1 + 3x_2 \le 3$	$3, x_2 \le 4$					12	М
				OR					
2.	Apply princ	Apply principle of duality to solve the LPP Maximize $z = 3x_1 - 2x_2$ subject to the							
	constraints	$x_1 + x_2 \le 5$,	$x_2 \le 4, 1$	$\leq x_2 \leq 6$	and $x_{1,}x$	$r_2 \ge 0$		12	М
				UNIT	-11				
3.	Find the ini	tial basic fea	sible sol	ution of th	ne follow	ing trar	sportatior	n problem	
	by stepping	g stone meth	od						
		e house \rightarrow	N	/ ₁ W ₂	W_3	W ₄	Factory		
	F	actory↓					Capacity	/	
		F ₁	1		50	10	7		
		F ₂	7		40	60	9		
	Ware hou	F ₃ use requirem	4 ent 5		70	20 14	18 34	12	М
	ware not				1	17	04		
4.	Explain tra	nsportation a	lgorithm	by MOD	method	with su	uitable exa	ample 12	М
				UNIT-					М
		Give the mathematical formulation of assignment problem							
b)	Explain how you sequence 2 jobs on m machines.								М
6.	There are f	ive jobs to be	a assiand	OR on 5 m	achines	and as	sociated	cost matrix	
0.	is as follow	•	2 assign		acimics				
		fachines \rightarrow							
		Jobs↓	S ₁	S ₂	S₃	S	4 S t	5	
		B ₁	4	6	7	5	5 11	1	
		B ₂	7	3	6	ç	9 5		
		B ₃	8	5	4	6	6 9		
		B 4	9	12	7	1	1 10)	

B5759811find the optimum assignment and associated cost using assignment technique12M

UNIT–IV

7. Discuss the algebraic method of solving 2x2 game by taking suitable example 12M **OR**

8. Solve the following game using dominance principle

Player B
Player A
$$\begin{bmatrix}
3 & 5 & 4 & 9 & 6 \\
5 & 6 & 3 & 7 & 8 \\
8 & 7 & 9 & 8 & 7 \\
4 & 2 & 8 & 5 & 3
\end{bmatrix}$$
12M

- a) Write a short note on developing inventory model
 - b) Differentiate controlled variable and uncontrolled variables in inventory problem 6M

OR

Find the EOQ for the following data annual usage=1000 pieces, cost per piece=Rs. 250, ordering cost=RS 6 per order, expecting cost=RS 4 per order, Inventory holding cost =20% of average inventory material holding cost=Rs 1 per piece.

6M