

Hall	Tick	et Number :		
Code	e: 19	B121T	R-19	
		M.Tech. II Semester Regular Examinations November 20	20	
		Structural Dynamics		
		(Structural Engineering)		
Mc	ax. N	1arks: 60 1	ime: 3 Hours	
		Answer any five questions from the following (5 x 12 = 60 Marks *******)	
			Marks CO	loom _evel
1.		Derive equation of motion for a freely vibrating undamped SDOF system		
		and obtain its solutions.	12M	
2.	a)	Define the following terms:		
		i) Amplitude ii) Damping iii) Resonance	03M	
	b)	Define logarithmic decrement and derive an expression for logarithmic		
		decrements	09M	
3.	a)	Derive the expression for Duhamel's integral for the response of SDOF		
		system subjected to arbitrary excitation.	06M	
	b)	An SDOF system consists of a mass of 20kg, a spring of stiffness 2200N/m and a dashpot with a damping coefficient of 60 NS/m is		
		subjected to a harmonic excitation of F=200sin5t. write the complete		
		solution of the equation of the equation of motion	06M	
4.		Derive an equation of motion for a damped harmonic excitation of a		
		SDOF vibrating system and obtain its complete solution.	12M	
5.		Determine the natural frequencies and mode shapes for the structure as shown in Fig.1.		
		$m = 1 \qquad \qquad$		
		$m = 1.5$ $m_2 = 1200 \text{ k/m}$		

X,

m = 2

6.

Fig2

12M

12M

- 7. By using Holzer method, find the natural frequencies of the system in fig3: assume K=2 N/m; m=2 kg.
 - 4m 4m 2m К Гта 3

12M

Derive equations of motion for Multi degree of freedom (MDOF) system subjected to earthquake excitation.

12M

Hall Ticket Number :						
						R-17

Code: 19B12ET

Max. Marks: 60

M.Tech. II Semester Regular Examinations November 2020

Advanced Concrete Technology

(Structural Engineering)

Time: 3 Hours

Answer any five questions from the following ($5 \times 12 = 60$ Marks)

Marks

- 1. a) Explain the hydration process of Bogues compounds and highlight the 6M one which contributes to the strength.
 - b) Why is the size gradation of aggregates important in making concrete? 6M Explain.
- 2. a) Mention the important properties of air entraining cement, masonry 6M cement and oil well cement.
 - b) Discuss about the significant property of aggregates to be used for 6M making light weight concrete and abrasion resistant concrete.
- 3. Illustrate the effects of water reducing agents on properties of concrete 12M in its fresh and hardened state.
- 4. Discuss the mechanical and durability properties achieved using HSC 12M and Super HSC.
- 5. Differentiate between HPC and Ultra -HPC in terms of raw materials 12M used, strength and practical applications.
- 6. A private agency approached you to conduct the condition assessment 12M of a recently built flyover since there is a dispute about the quality issues like low quantity and quality of materials used, not properly cured etc., raised by another agency. What are the ways in which you will carry the assessment with NDT methods?
- 7. Discuss in detail about why durability is a concern now a day? And 12M methods to achieve the same in concrete.
- 8. Explain the salient features of centering, scaffolding, shoring and shuttering. 12M

	Tiok	at Number :											
		et Number :										R-19	>
Code		B122T		D -	1		•						
		M.Tech. II S			-						mper	2020	
			Analy				& roi iginee			es			
Мах	(. M	arks: 60		(0110	00101		Iginioo					Time: 3 H	ours
		Answer a	ny five q	uestic	ons fro	om th *****		wing	(5x1	2 = 0	60 Mai	rks)	
1.		Define Shell	I. Explair	abou	ut its	comp	onent	parts	and	class	ificatio	on with neat	
		figures.											12M
2.		Derive the e	quations	of ea	uilibri	um o	f memh	orane	theor	v for	cylind	rical shells	12M
2.			quationo	01 04	union		i inoine	lano		y 101	oyinia		12101
3.		Derive the D	KJ chara	acteris	stic e	quatic	n for b	endin	g the	theo	ry of s	hells.	12M
4.		Derive the g	•	differ	entia	l equa	ation fo	r the i	memb	orane	analy	sis of shells	
		of double cu	rvature.										12M
5.		Derive the m	nembrane	e diffe	rentia	al equ	ation fo	or ellip	otic pa	arabo	oloid.		12M
6.	a)	What are the	basic as	sumpt	tions	consi	dered ir	the a	analys	is of	the fold	ded plates?	4M
	b)	Explain the	plate and	slab	actio	n of fo	olded p	lates.					4M
	c)	Write about	the three	-edge	she	ar equ	uation f	or fold	ded pl	lates			4M
					_								
7.		Derive the e	quilibriun	n equa	ation	tor sp	oherica	shell					12M
8.		Explain the	detailed	proce	dure	for th	e analy	vsis of	f folde	ed pla	ates by	y Simpson's	
		method.											12M
						***	*						

Hal	l Tic	ket Number :	
		R-19	
000	IC. 1	M.Tech. II Semester Regular Examinations November 2020	
		Finite Element Analysis of Structures	
		(Structural Engineering)	
Ma	IX. N	Aarks: 60 Time: 3 Hou	rs
		Answer any five questions from the following (5 x 12 = 60 Marks)	
1.	a)	Explain the basic steps involved in FEM	6M
	b)	Differentiate between Merits and Demerits of FEM	6M
2.	a)	Bring out the differences between continuum methods and FEM	6M
	b)	Using the Rayleigh - Ritz method determine maximum deflection for cantilever	
		beam subjected to UDL and concentrated load at end of beam.	6M
3.		Determine the element stiffness matrix for a beam element?	12M
5.		Determine the element sumess matrix for a beam element?	
4.		What are different types of elements used for plane stress and plane strain	
			12M
5.		Determine the shape function for a triangular element by Area co-ordinate	4014
		method? Explain natural co-ordinate system?	12M
6.	a)	Explain the Lagrange and Serendipity elements.	6M
0.	b)	Derive shape function for quadratic bar element using Lagrange interpolation	0101
	~)	function.	6M
7.		Find out the Shape function for Axi-symmetric Triangular element?	12M
8.			12M
