Code: 19B121T

M.Tech. Il Semester Regular Examinations November 2020
 Structural Dynamics

(Structural Engineering)
Max. Marks: 60
Time: 3 Hours
Answer any five questions from the following ($5 \times 12=60$ Marks)

1. Derive equation of motion for a freely vibrating undamped SDOF system and obtain its solutions.
2. a) Define the following terms:
i) Amplitude
ii) Damping
iii) Resonance
03M
b) Define logarithmic decrement and derive an expression for logarithmic decrements09M
3. a) Derive the expression for Duhamel's integral for the response of SDOF system subjected to arbitrary excitation.
b) An SDOF system consists of a mass of 20 kg , a spring of stiffness $2200 \mathrm{~N} / \mathrm{m}$ and a dashpot with a damping coefficient of $60 \mathrm{NS} / \mathrm{m}$ is subjected to a harmonic excitation of $\mathrm{F}=200 \sin 5$ t. write the complete solution of the equation of the equation of motion
4. Derive an equation of motion for a damped harmonic excitation of a SDOF vibrating system and obtain its complete solution.
5. Determine the natural frequencies and mode shapes for the structure as shown in Fig. 1.

Fig 1
12M
6. Calculate the natural frequency and mode shape by stodola method for the given below $\mathrm{m} 1=\mathrm{m} 2=\mathrm{m} 3=2, \quad \mathrm{~K} 1=\mathrm{K}, \mathrm{K} 2=2 \mathrm{~K}, \mathrm{~K} 3=3 \mathrm{~K}$

Fig2
7. By using Holzer method, find the natural frequencies of the system in fig3: assume $\mathrm{K}=2 \mathrm{~N} / \mathrm{m} ; \mathrm{m}=2 \mathrm{~kg}$.

Fig 3
8. Derive equations of motion for Multi degree of freedom (MDOF) system subjected to earthquake excitation.
\square

Code: 19B12ET

M.Tech. Il Semester Regular Examinations November 2020

Advanced Concrete Technology

(Structural Engineering)
Max. Marks: 60
Time: 3 Hours
Answer any five questions from the following ($5 \times 12=60$ Marks)

1. a) Explain the hydration process of Bogues compounds and highlight the one which contributes to the strength.
b) Why is the size gradation of aggregates important in making concrete? Explain.
2. a) Mention the important properties of air entraining cement, masonry cement and oil well cement.
b) Discuss about the significant property of aggregates to be used for making light weight concrete and abrasion resistant concrete.
3. Illustrate the effects of water reducing agents on properties of concrete in its fresh and hardened state.
4. Discuss the mechanical and durability properties achieved using HSC and Super HSC.
5. Differentiate between HPC and Ultra -HPC in terms of raw materials used, strength and practical applications.
6. A private agency approached you to conduct the condition assessment of a recently built flyover since there is a dispute about the quality issues like low quantity and quality of materials used, not properly cured etc., raised by another agency. What are the ways in which you will carry the assessment with NDT methods?
7. Discuss in detail about why durability is a concern now a day? And methods to achieve the same in concrete.
8. Explain the salient features of centering, scaffolding, shoring and shuttering.12M

Hall Ticket Number :										

Code: 19B122T

R-19

M.Tech. Il Semester Regular Examinations November 2020

Analysis of Shells \& Folded Plates

(Structural Engineering)
Max. Marks: 60
Answer any five questions from the following ($5 \times 12=60$ Marks $)$

1. Define Shell. Explain about its component parts and classification with neat
figures.

2. Derive the equations of equilibrium of membrane theory for cylindrical shells.

3. Derive the DKJ characteristic equation for bending the theory of shells.
4. Derive the governing differential equation for the membrane analysis of shells
of double curvature.
5. Derive the membrane differential equation for elliptic paraboloid. 12M
6. a) What are the basic assumptions considered in the analysis of the folded plates? 4 M
b) Explain the plate and slab action of folded plates. 4M
c) Write about the three-edge shear equation for folded plates. 4M
7. Derive the equilibrium equation for spherical shell. 12M
8. Explain the detailed procedure for the analysis of folded plates by Simpson's method.
\square
Hall Ticket Number :
Code: 19B12AT
M.Tech. Il Semester Regular Examinations November 2020
Finite Element Analysis of Structures
(Structural Engineering)
Max. Marks: 60
Answer any five questions from the following ($5 \times 12=60$ Marks)Time: 3 Hours
b) Differentiate between Merits and Demerits of FEM 6M
9. a) Bring out the differences between continuum methods and FEM 6M
b) Using the Rayleigh - Ritz method determine maximum deflection for cantilever beam subjected to UDL and concentrated load at end of beam. 6M
10. Determine the element stiffness matrix for a beam element? 12M
11. What are different types of elements used for plane stress and plane strain problems in FEM 12M
12. Determine the shape function for a triangular element by Area co-ordinate method? Explain natural co-ordinate system? 12M
13. a) Explain the Lagrange and Serendipity elements. 6M
b) Derive shape function for quadratic bar element using Lagrange interpolation function. 6M
14. Find out the Shape function for Axi-symmetric Triangular element? 12M
15. Determine the strain-displacement relation for hexahedral element? 12M
