Hall	Tick	et Number :	1
Code	• 70	R-17	
Coue	. /6	I B.Tech. II Semester Regular Examinations May 2018	
		Data Structures	
		(Common to All Branches)	
		arks: 70 ver all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********* UNIT-I	Jrs
1.	a)	Define pointer and explain about pointer arithmetic.	7M
	b)	List the four dynamic memory allocation functions in C and give their syntax	
		with examples.	7M
		OR	
2.	a)	What are the features and uses of pointers?	7M
	b)	Write a C program to add two numbers using command line arguments.	7M
3.	a)	UNIT–II Differentiate between structure and union.	6M
0.	⊆, b)	Give the tracing of quick sort algorithm for the data [1, 2, 3, 4, 5, 6, 7, 8] to be	0
	- /	sorted in ascending order. Discuss its time complexity.	8M
		OR	
4.	a)	Write a program in C to copy the contents of one file to another.	7M
	b)	Write an iterative algorithm for binary search and discuss its time complexity.	7M
5.	a)	Convert the following infix expressions to postfix expressions.	
		i) A + B * C + D ii) (A + B) * (C + D) iii) A + B + C + D	6M
	b)	Write a program in C to implement operations on queue.(Use pointers)	8M
•	、	OR	
6.	a)	Write an algorithm to evaluate a postfix expression.	8M
	b)	Give the advantages and disadvantages of recursion.	6M
7.	a)	Write a C program for insertion operation in a singly linked list.	7M
	b)	Write C functions for insertion and deletion operations in doubly linked list.	7M
		OR	
8.	a)	Write a recursive program to reverse the given singly linked list.	8M
	b)	Give the applications of circular linked list.	6M
9.	a)	Define binary search tree. Write a C function to insert a new node in a binary search tree.	8M
	b)	Give the applications of graphs.	6M
	,	OR	
10.	a)	Write a C function to search a given key in a given binary search tree.	8M
	b)	Define the following regarding graphs.	
		i) Undirected graph ii) In degree iii) Digraph ***	6M

|--|

Code: 7G521-A

R-17

I B.Tech. II Semester Regular Examinations May 2018

Engineering Graphics –II

(Civil Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

1. Draw the projections of a cylinder, base 25 mm radius and axis 70 mm long, resting on one of its generator on the H. P., with the axis inclined at 45° to the V. P.

OR

2. A pentagonal pyramid, base 30 mm side and axis 50 mm long has one of triangular faces in V.P. and the edge of the base contained by that face makes an angle of 30 degrees with the H.P. Draw its projections.

UNIT–II

3. A rectangular prism 30 mm × 60 mm and height 100 mm is standing on the base on the ground with the longer edges of the base parallel to the VP. It is cut by an AIP plane to give the view from above the section as a square of 30 mm sides. Draw an auxiliary View with the true shape of the section and find the inclination of the auxiliary inclined plane with the ground.

OR

4. A cylinder of base 40 mm diameter and height 60 mm is standing on one of the points on the base circle and the base makes 30⁰ to the ground and the axis is parallel to the V.P. The axis leans towards the right. The object is cut by a section plane such that the view from the right shows the true shape of the section. The top most portion of the section is 50 mm above the ground. Draw the true shape of the section and also find the inclination of the section plane with the V.P and H.P.

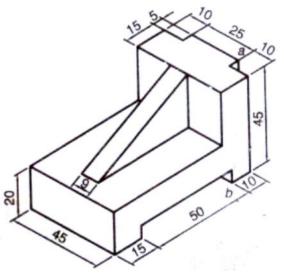
UNIT–III

5. A vertical cylinder of 70 mm diameter is penetrated by a horizontal cylinder of the diameter 50mm. The axis of horizontal cylinder is parallel to both H.P and V.P and is bisecting the axis of the vertical cylinder. Draw the projections showing the lines of intersection

OR

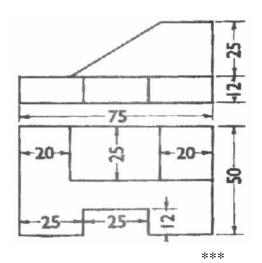
6. A pentagonal prism having a base with 30 mm side and 65 mm long axis, is resting on its base in the H.P. with a rectangular face parallel to the V.P. It is cut by a section plane perpendicular to the V.P., inclined at 30[°] with the H.P., and passing through a point on the axis, 25 mm from one of the bases. Draw the development of its lateral surface.

UNIT–IV


7. A hexagonal prism with a 30 mm base and 45 mm axis has an axial hole with a 30 mm diameter. Draw its isometric projection.

OR

8. A hexagonal prism of base edge 30 mm and height 70mm long is resting on its rectangular face on the ground with its axis parallel to the VP. A square prism of 20 mm base edge and height 40 mm rests on its base on the top rectangular face of the hexagonal prism. The axis of the square prism intersects and bisects the axis of the hexagonal prism when produced. One of the base edges of the square prism is parallel to the VP. Draw an isometric projection of the set up.


UNIT-V

9. Draw the front view, top view and side view of the object whose isometric view is shown in the Figure below (All dimensions are in mm).

OR

10. Draw isometric view for the following orthographic projection.

Hall Ticket Number :													
----------------------	--	--	--	--	--	--	--	--	--	--	--	--	--

Code: 7G522

I B.Tech. II Semester Regular Examinations May 2018

Engineering Mechanics - Dynamics

(Common to CE & ME)

Max. Marks: 70

Time: 3 Hours

R-17

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

- UNIT–I
- 1. a) Derive the equations of rectilinear motion of a particle moving with constant acceleration.
 - b) A stone is dropped into a well and falls vertically with constant acceleration $g=9.81 \text{ m} / \text{s}^2$. The sound of impact of the stone is on the bottom of the well is heard 6.5 sec after it is dropped. If the velocity of sound is 336.33 m / s, how deep is the well ?

7M 4M

7M

OR

- 2. a) Define normal and tangential components of accelerations. Write the equations.
 - b) The pilot of an airplane A flying horizontally with constant speed v = 450 kmph at an elevation h = 600 m above a level plain wishes to bomb a target B on the ground (Figure.1). At what angle below the horizontal should he see the target at the instant of releasing the bomb in order to score a hit?

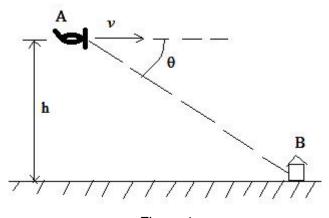


Figure.1

10M

7M

- 3. a) Explain about kinematics of rotation of a rigid body.
 - b) The armature of an electric motor has angular speed N = 1800 rpm at the instant when the power is cut off. If it comes to rest in 6 seconds,

UNIT-II

- (i) Calculate the angular deceleration assuming that it is constant.
- (ii) How many complete revolutions does the armature make during this period? 7M

OR

- a) What is instantaneous center of rotation of a rigid body making plane motion?
 Explain with an example.
 7M
 - b) A locomotive runs along a straight level track with constant acceleration a=0.2g.
 Find the total acceleration of a point at the top of the rim of a driver wheel of radius r = 1 m when the speed of the locomotive is 25 kmph.
 7M

UNIT–III

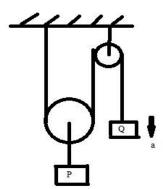
- 5. a) Explain Virtual work principle and D'Alembert's principle with an example.
 - b) A police investigation of tire marks shows that a car travelling along a straight level street had skidded for a total distance of 40 m after the brakes were applied. The coefficient of friction between tires and pavement is estimated to be $\mu = 0.6$. What was the probable speed of the car when the brakes were applied? Assume constant deceleration for the car.

OR

 a) Two weights P and Q are connected by the arrangement shown in Figure.2. Neglecting friction and the inertia of the pulleys and cord, find the acceleration 'a' of the weight Q. Also find the tension in the cord. Assume that P = 40 KN and Q=30 KN.

b) A

b)


7. a)

8. a)

9. a)

b) A

b) A

Figure.2	7M
A locomotive of weight W = 600 KN goes around a curve of radius r=300m at a	
uniform speed of 70kmph. Determine the total lateral (outward) thrust on the rails.	7M
UNIT–IV	
State and prove Work-Energy principle of rectilinear translation.	7M
When a ball of weight 'W' rests on a spring of constant 'k', it produces a static	
deflection of 25 mm. How much will the same ball compress the spring if it is	
dropped from a height $h = 300 \text{ mm}$? Neglect the mass of the spring.	7M
OR	
State and prove Impulse – Momentum principle	7M
A locomotive weighing 60 tons has a velocity of 15 kmph and backs into a freight	
car weighing 10 tons that is at rest on a level train track. After the coupling is	
made, with what velocity 'v' will the entire system continue to move?	7M
UNIT–V	
Derive the equation of motion of a rigid body rotating about a fixed axis.	7M
A homogeneous sphere, of radius $a = 0.25$ m and weight $W = 1$ KN, can rotate	
freely about a diameter. If it starts from rest and gains, with constant angular	
acceleration, an angular speed of $n = 180$ rpm in 12 revolutions, find the acting	
moment 'M'.	7M
OR	
A constant force of 100N is applied tangentially on a cylinder at rest, whose	

 A constant force of 100N is applied tangentially on a cylinder at rest, whose mass is 50kg and radius is 10cm, for a distance of 5m. Determine the angular velocity of its centre of mass. Assume that there is no slip.

7M

7M

Hall 7	Ficke	et Number :													R-17	
Code	: 7G	C24	1							_]	1			L		
		I B.Tech	n. II S				-					ns M	ay 20	18		
				-			-			natic nche						
		ırks: 70 er all five uni	ts by	cho	osing	g on	e qu	estio	n fro	m ec	ach u	unit (5 x 14		e: 3 Hou Aarks)	irs
			·			-		*****								
1.	a)	Trace the cu	irve	$y^{2}(2$	a-x) = x	c ³		<u> </u>	I						7M
	b)	Evaluate ∬	r sin	, d	rd"	over	the	cardi	oid	r = a	ı (1 —	cos ") above	e the ir	nitial	
		line.														7M
						а	$\sqrt{a^2}$	\overline{OF}	2							
2.	a)	Evaluate the	e dou	ble ii	ntegr	al ∫	\int_{0}	$(x^{2} -$	$+y^{2}$))dxdy	by	chan	ging in	to pola	ar	
		coordinates														7M
	b)	Find the volu			ded	by th	e cy	linde	$\mathbf{r} x^2$	$+y^2$	= 4	and	the pla	ines		
		y + z = 4 and	a z, =	= 0												7M
									T–II							
3.	a)	Find the Lap	blace	tran	sforn	n of a	e ^{4t} sii	n 2t	$\cos t$							7M
	b)	Evaluate \int_{0}^{∞}	$t e^{-3t}$	sin t	dt	appl	ying	Lapl	ace t	transf	form.					714
		0						OF								7M
4.	a)	Find the Lap	lace	tran	sforn	n of	sin 3	$t \cos \frac{1}{2}$	<u>t</u>							714
		Evaluate L						ı		uncti	on of	perie	od 2	given l	ov	7M
	,	$f(t) = \begin{cases} \sin t \\ 0 \end{cases}$	-		_	-		•				•		0	,	
		$\int (l) = \int 0$, <i>f</i>	< t ·	< 2f											7M
								UNI	T–III							
5.	a)	Find the inve	erse	Lapla	ace t	ransf	orm			2						
		Applying La						5	-	515		ation				7M
	0)	$\frac{d^3y}{dt^3} + 2\frac{d^2y}{dt^2}$														
		$\frac{dt^3}{dt^3} + 2\frac{dt^2}{dt^2}$	dt	2	y = 0	, y(0) =			= y ((0) =	2				7M
0	-)							OF		\$						
6.	a)	Find the inve	erse	Lapla	ace t	ransf	orm	of $\frac{1}{s^2}$	$\frac{1}{2} + 4$	s + 5						7M
	b)	Applying La									l equ	ation				
		$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + $	- 5 <i>x</i> =	e^{-t}	sin <i>t</i> ,	<i>x</i> (0) = 0	, <i>x</i> ′	(0) =	-1						7M

UNIT-IV
7. a) Find the directional derivative of the function
$$f = x^2 - y^2 + 2z^2$$
 at the point $P = (1, 2, 3)$ in the direction of PQ where $Q = (5, 0, 4)$ 7M
b) Show that $F = (e^x \cos y + yz)i + (xz - e^x \sin y)j + (xy + z)k$ is conservative over its natural domain and find potential function for it. 7M
OR
8. a) Establish the relation $\nabla^2 [f(r)] = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$ where $r = |\bar{r}|$ 7M
b) Evaluate $\int_s \bar{F} \cdot \bar{n} \, dS$ where $\bar{F} = 18z\bar{i} - 12\bar{j} + 3y\bar{k}$ and S is the part of the surface of the plane $2x + 3y + 6z = 12$ located in the first octant. 7M
9. a) Applying divergence theorem evaluate $\iint_s x dy dz + y dz dx + z dx dy$ where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ 7M
b) Evaluate by Greens theorem $\oint_C (y - \sin x) dx + \cos x \, dy$ where C is the triangle enclosed by the lines $y = 0$, $x = \frac{f}{2}$ and $f y = 2x$ 7M

10. Verify stokes theorem for the vector field $\overline{F} = (2x - y)\overline{i} - yz^2\overline{j} - y^2z\overline{k}$ over the upper half of the surface $x^2 + y^2 + z^2 = 1$ bounded by its projection on the xy – plane. 14M

Hall	Tick	et Number :												R-17				
Code: 7GC23																		
		IB.Tech	n. II S	Sem			-				itior	ns M	ay 20	18				
				1		-		ng F	-	Sics & CS								
Мах	. Mc	arks: 70		l	CON	IIIIO	1110	CL,			, ,			Time: 3 Ho	ours			
A	\nsw	er all five uni	ts by	chc	osing	g on	•	estio *****	n fro	m ec	αchι	unit (5 x 14	= 70 Marks)				
									IT–I									
1.												10M						
and minima due to interference of reflected b) In a Newton's Rings experiment diameter									•									
	b)			•	•						-		•	culate R.I. of				
		liquid.		•											4M			
2.	2)	Evolain tha f		vina				OF	R									
۷.	a)	Explain the f		•	ersio	n ii	i) Pu	mpin	a me	char	nism	iii) A	Active s	svstem	6M			
	b)	<i>,</i> .						•	•	, or loan		, ,		, jotom	8M			
	b) Explain the working of semi conductor laser. 8N UNIT-II																	
3.	a)	•				• •	bace	ce lattice? Describe briefly the seven crystal										
											10M							
	b) Find the miller indices of a set of parallel planes which makes intercepts in the ratio 3a:4b on the X and Y axes and are parallel to Z axis, a, b, c, being									•								
		primitive vec								•			, ,	<i>, ,</i> , ,	4M			
4		Define ultree			o o rib r			OF	-	لمما م	4	al a.t.:	on of u		014			
4.	a) b)	Define ultras Give an acc				•					•				8M 6M			
	5)		ount	or th	0 1110	liiou			T–III			or an			OW			
5.	a)	Derive Schro	oding	ger's	time	inde	penc	lent	wave	equ	ation	•			8M			
	b)	Explain the	signif	ican	ce of	wav	e fur								6M			
6.	a)	Explain the	conce	ept c	of Kro	nia F	Penn	OF v mo							7M			
	b)	-		•		-		-		uctiv	ity of	met	als on	the basis of	7101			
		free electror	theo	ory.						1					7M			
7.	a)	What are the	diff، د	ueior	n and	drift			VI–T and	doriv	/A				7M			
7.	a) b)	What is Hal										effici	ent for	an extrinsic	7 101			
	2)	semiconduc			e o tai	in an	onp					00			7M			
-								OF										
8.	a) b)	Discuss gen Explain DC		• •			•		ducto	ors.					8M 6M			
	D)			40 J	usep	1501			T–V						OIVI			
9.	a)	Give the clas	ssific	atior	n of N	lagn	etic r			and e	expla	in th	eir prop	perties.	8M			
	b)	Explain mag	•			•		•	tic fl	ux in	tensi	ty H	and m	agnetization	<u> </u>			
		M. How are	they	relat	ed to	eac	h oth	ner? OF)						6M			
10.	a)	Explain the B	asic p	orinci	ples r	espo	nsibl			ual pr	opert	ies of	⁻ Nano r	naterials.	6M			
	b)	Explain Sol-	-		-	-				-	-				8M			
							*	**										