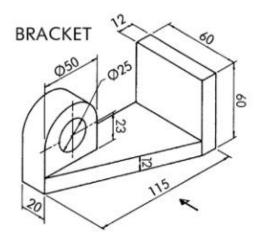
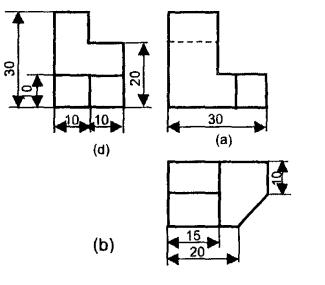
Hall	Tick	et Number :														
Code	e: 7 G	C23	•			•		•			•				R-17	
B.Tec	ch. ll	Semester I	Reg	ular						-	am	inati	ions M	∕lay/.	June 20	19
						-		ng∣ ∽⊏∖	-							
Мах	. Mc	arks: 70		(C	om	non	10 0	, N	NE O	nd C	,s⊏)			Tim	e: 3 Hou	Jrs
		er all five uni	ts by	cho	osiną	g on		estio		mea	ach i	unit (5 x 14			
						Γ		II T —I								
1.	a)	Explain the emission. O conditions in	btain	an	expre	essio	d ab n fo	sorpt r ene	ergy	dens						
	b)	In a Newton and that of t find the wave	he 51	th rin	g is i	0.336	6 cm					•				
				jui oi	une i	iigint.		OR								Ū
2.	a)	Explain the c	consti	ructio	n an	d wo	rking	of se	emico	onduc	tor la	aser				7
	b)	Describe the numerical ap	•	•	e on	whic	ch op	otical	fiber	wor	ks a	nd ol	btain a	an exp	pression f	for 7
								IT–II								
3.	a)	What are M Miller indices	6											-		8
	b)	Describe in outrase		how	a fla	aw in	solio			is de	tecte	ed by	non d	estruc	tive metho	od 6
	、				• •			OR								
4.	a) b)	Define Packi Draw the foll	•				ubic		ell (C							8 6
5.	a)	State Heise electrons car		-		•	princ	iple.	Bas			e pri	nciple	, prov	e that fro	ee 7
	b)	Mention the electron the		•				for e	electr			•			assical fro	ee 7
0	-)	A						OR								
6.	a)	Assuming the discuss the Hence obtain	soluti	on o	fap	articl	le in	one	dime			•				
	b)	Find the ten 0.5eV above	•				cupie	ed.		oroba	bility	that	a stat	e with	an ener	ду 4
7	-)		- 44					IT–IV								0
7.	a) b)	What is Hall Discuss Mag					•			е на		emcie	ents.			8 6
8.	a)	What is Meis	sner	effec	t? Di	iscus	s typ	-		oe II s	supe	rcond	luctor	with ex	amples.	7
	b)	Discuss how superconduc		-	pairs	are	form	ied?	Wha	t is tl	ne in	nporta	ance c	of Coo	per pairs	in 7
								IT–V								
9.	a)	What are fer		-						-				-	tic materi	
	b)	Explain the s	synthe	esis (of nai	noma	ateria	lls us OR	•	hemi	cal va	apour	depos	sition.		7
10.	a)	What are H					0	c ma	ateria		•	oare	them	on th	e basis	of 8
	b)	What are na	no ma	ateria	als? E	Expla		e stru **	icture	e and	prop	erties	s of ca	rbon n	onotubes	. 6


На	II Tie	cket Number :	
		G121 R-17	
		n. II Semester Regular & Supplementary Examinations May/June 2	019
		Data Structures	
Ma	~ ~ ~	(Common to All Branches) arks: 70 Time: 3 Ho	
		wer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	2013
4	-)		
1.	a)	What is meant by a pointer? Write a program to swap the values of two variables using pointers.	7M
	b)	Write a program to show the usage of pointer to structure.	7M
		OR	
2.	a)	Demonstrate the use of &(address of) and *(value at address) operators	7M
	b)	Write a program to show a function returning pointer.	7M
3.	a)	UNIT–II What is a structure? Explain the syntax of Structure declaration with example	7M
0.	b)	How Selection sort is different from bubble sort?	7M
	~)	OR	
4.	a)	Define Union. Explain its general syntax with one example.	7M
	b)	Arrange the following integers in ascending order using Merge sort procedure.	
		39,48,62,18,23,34,58,12.	7M
		UNIT–III	
5.	a)	Explain stack with basic Operations (push and pop).	7M
	b)	Design the procedure to count number of parenthesis in an expression using Stack.	7M
_		OR	
6.		Compare Linear Queue and Circular Queue. Write a program to insert and delete from a circular queue.	14M
_		UNIT-IV	
7.		Implement Insertion, Deletion and search operations at any position in a singly linked list.	14M
		OR	
8.	a)	Write insertion and deletion functions for the doubly linked list.	7M
	b)	Summarize Circular Linked List	7M
_		UNIT-V	
9.	a)	Construct a Binary tree T by using the following in order and post order traversals of T. In order: DKIBAEGHJFC	
		Post Order: K D I E A G B F C J H.	7M
	b)	Explain various methods of representing graphs in memory.	7M
10.		What is Binary Search Tree (BST)? How do we do search in BST? Write a	
		procedure for insertion and deletion operations on BST.	14M

На	II Ticket Number :]	r	
Cod	e: 7G521	1	I	1	1	1	1	1	1	1	1	L	R -	17
	Tech. II Semester	Reg	En	gin	eer	pler ing on to	Gra	phi	cs –		natio	ons M	ay/June	e 2019
-	x. Marks: 70 Answer all five units	s by a				e que	estior ****	fron			nit (t	5 x 14		3 Hours ks)
1.	Draw the projection on the HP on one o					5mm		eter				m lon	g, lying	14M
						OR								
2.	A pentagonal pyran its base corner on and 30 ⁰ to V.P.											0		
3.	A hexagonal prism one of its bases with inclined at 60° to H distance 12 mm fro shape of section.	n two HP ai	of th nd p	e vei erpei	rtical ndicu	n and faces Ilar to	s perj o VP	s leng bendi and	cular pass	to V sing	'P. It i throu	s cut l gh a	oy a plane point at a	e I
						OR								
4.	A cone, diameter of is cut by a section p section plane passe the true shape of th	olane es thr	perp ough	endi the	cular	r to th	ne VF	o and	inclir	ned a	at 75 ⁰	⁾ to the	e HP. The	;
						ι	JNIT-	-111						
5.	A hexagonal prism of on HP. such that a perpendicular to V.F the top end of an e lateral surface of the	recta P. and extren	angu d incl ne la	lar fa ined teral	ace i at 30	s par D ^o to l	allel HP. T	to V. he se	P. It ectior	is cu n plai	it by ne is	a sec passir	tion plane	; 1
			•			OR								
6.	Draw the developm side of base 30 mm to V.P. It is cut by a	and a	axis 4	0 mr	n, res	urface sting blane	e of th on HI at a l	^D with neigh	n one	of th	e bas	•	•	
7.	Draw the isometric and resting on its ba		-		•	al pris	erpe	base				xis 100) mm long) 14M
•							:16 (I			L		0		

8. Draw the isometric view of a square prism with the side of the base 40mm and length of the axis 70mm. when its axis is i) vertical ii) horizontal. 14M


UNIT-V

9. Draw the front view, top view and left side view for the following figure

10. Draw the isometric view for the following figure

14M

14M

Hall Ticket Number :							
						J	R-17

Code: 7G522

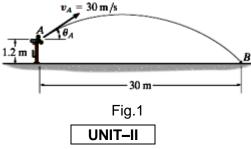
I B.Tech. II Semester Regular & Supplementary Examinations May/June 2019

Engineering Mechanics - Dynamics

(Common to CE and ME)

Max. Marks: 70

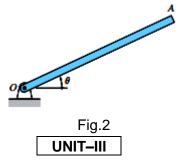
Time: 3 Hours

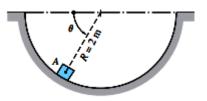

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT-I

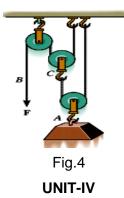
1. A particle moves along a horizontal path with a velocity of $v = (3t^2 - 6t)$ mis, where t is the time in seconds. If it is initially located at the origin 0, determine the distance traveled in 3.5 s, and the particle's average velocity and average speed during the time interval.

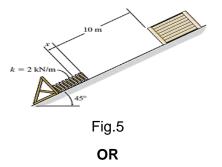
OR


2. The pitching machine is adjusted so that the baseball is launched with a speed of $v_A = 30$ m/s. If the ball strikes the ground at B (Fig.1), determine the two possible angles θ_A at which it was launched.

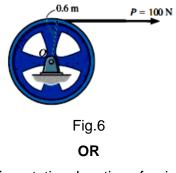

- 3. a) Discuss the rigid body translation.
 - b) A boy drops a stone from the top of well vertically downwards into it. The splash is heard by him after 6 seconds. Find the well depth by taking sound velocity as 400 m/s.

OR


- 4. The angular position of the rod OA (Fig.2) varies with time as $\theta = -4t^2+24t-10$, where θ is in radians and t is in seconds. Determine
 - (a) the angular velocity and the angular acceleration of the rod at t = 4 s; and
 - (b) the total angle turned through by the rod between t = 0 and t = 4 s.


5. The 12-kg mass A in Fig. 3 slides with negligible friction in a semicircular trough of radius R = 2 m. The mass is launched at θ = 30^o with the velocity v₀ = 4 m/s toward the bottom of the trough. Derive the following as functions of θ : (1) the speed of the mass; and (2) the contact force between the mass and the trough.

6. A force of F = 15 kg is applied to the cord as shown in Fig.4. Determine how high the 30 kg block A rises in 2 s starting from rest. Neglect the weight of the pulleys and cord.


7. In Fig.5, if the coefficient of kinetic friction between the 100-kg crate and the plane $\mu_k=0.25$, determine the compression x of the spring required to bring the crate momentarily to rest. Initially the spring is un-stretched and the crate is at rest.

- 8. a) Discuss conservation of momentum
 - b) Explain impact of jet on vane

UNIT-V

9. The 100 kg wheel has a radius of gyration about its center 0 of $k_0 = 500$ mm (Fig.6). If the wheel starts from rest, determine its angular velocity in t = 3 s.

10. Discuss equations of motion for rotational motion of a rigid body.

Hall	Ticket Number :	
Code:	7GC24 R-17	
I B.Te	ch. Il Semester Regular & Supplementary Examinations May/June 20	19
	Engineering Mathematics-II (Common to All Branches)	
	Time: 3 House Iswer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	Urs

1.	UNIT-I Trace the curve- Folium of Descartes: $x^3 + y^3 = 3axy$.	4 4 1
1.	Trace the curve- Folium of Descanes: $x^2 + y^2 - 5axy$. OR	14N
2.	Evaluate $\int_0^1 \int_x^{\sqrt{x}} xy dx dy$ by changing the order of integration.	7N
	UNIT–II	
3. a) Find the Laplace transform of $e^{3t} t^{rac{7}{2}}$	6N
k) Find the Laplace transform of $\int_0^t \frac{\sin u}{u} du$.	8N
	OR	
4.	Find the Laplace transform of the Half wave rectifier π	
	$f(t) = \begin{cases} Sin \omega t, \ 0 < t < \frac{\pi}{\omega} \\ 0, \ \frac{\pi}{\omega} < t < \frac{\pi}{2\omega} \end{cases}$	14N
	UNIT–III	
5.		14N
6.	OR Solve the differential equation $y'' + 7y' + 10y = 4e^{-3t}, y(0) = 0, y'(0) = -1$	
0.		14N
7	$\bigcup \mathbf{UNIT} = \mathbf{IV}$	
	Prove that $\nabla r^n = nr^{n-2}\bar{r}$.	7N
L	Find the directional derivative of $f = x^2yz + 4xz^2$ at (1,-2,-1) in the direction of $2\bar{\iota} - \bar{\jmath} - 2\bar{k}$.	7N
	OR	
8.	Prove that $\bar{A} = (6xy + z^3)i + (3x^2 - z)j + (3xz^2 - y)k$ is irrotational.	
		14N
9.	Verify Gauss divergence theorem for $\overline{f} = (x^3 - yz)i - 2x^2yj + zk$ taken over the surface of the cube bounded by the planes $x=y=z=a$. the coordinate	
		14N
	OR	
10	Verify Green's theorem for $\oint (xy \pm y^2) dx \pm x^2 dy$ where C is the closed	

10. Verify Green's theorem for $\oint_C (xy + y^2)dx + x^2dy$, where *C* is the closed curve of the region bounded by y = x and $y = x^2$. 14M