|--|--|

Code: 20A323T

I B.Tech. II Semester Regular Examinations October 2021

Engineering Mechanics

(Common to CE & ME)

Time: 3 Hours

R-20

Max. Marks: 70

- Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 - 2. In Part-A, each question carries Two mark.
 - 3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1.		Answer ALL the following short answer questions ($5 \times 2 = 10M$)	со	Blooms Level
	a)	Is there a difference between the number of general equilibrium equations available for a concurrent and for a non-concurrent system of coplanar forces? Explain.	1	2
	b)	State Varignon's theorem.	2	2
	c)	Can the centroid of a volume coincide with the centroid of its cross section? Explain with example.	3	2
	d)	Define angular displacement angular velocity angular acceleration	4	1
	e)	A rocket of weight 24 N is fired by an army man by using a portable rocket launcher of weight 180 N. If the rocket launcher is recoiled with a velocity of 0.8 m/sec, determine the velocity of rocket during launching.	5	2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12 = 60$ Marks)

Blooms Marks CO l evel

UNIT-I

A lamp weighing 5 N is suspended from the ceiling by a chain. It is pulled aside 2. by a horizontal cord until the chain makes an angle of 60° with the ceiling as shown in Fig. Find the tensions in the chain and the cord by applying Lami's theorem.

OR

3. Two spheres, each of weight 1000 N and of radius 25 cm rest in a horizontal channel of width 90 cm as shown in Fig. Find the reactions on the points of contact A, B and C.

1

3

12M

12M 1 3

4. Determine the forces in all the memers of the truss shown in Fig. and indicate the magnitude and nature of forces on the diagram of the truss. All inclined members are at 60° to horizontal and length of each member is 2 m.

UNIT-II

12M 2 3

OR

5. Determine the forces in all the members of the truss shown in figure. Indicate the nature of forces using the convention tension as positive and compression as negative.

12M 2 3

6. Find the centre of gravity of the I-section shown in Fig.

7. Find the moment of inertia of the shaded area shown in figure about the axis AB.

12M 3 3

8. A particle moves along a straight line so that its displacement is metre from a fixed point is given by, $S=2t^3+4t^2-6t+8$ Find : (*i*) velocity at start, (*ii*) velocity after 5 seconds, (*iii*) acceleration at start and (*iv*) acceleration after 5 seconds. 12M 4 3

12M

5

3

9. Two trains A and B leave the same station on parallel lines. A start with a uniform acceleration of 0.17 m/s² and attains a speed of 24 km/hr, when stream is reduced to keep the speed constant. B leaves 40 seconds after, with uniform acceleration of 0.3 m/s² to attain a maximum speed of 48 km/hr. When it will overtake A?

12M 4

3

UNIT-V

- 10. A system of frictionless pulleys carries two weights hung by inextensible cords as shown in figure. Find
 - $(i) \;\;$ The acceleration of the weights and tension in the cords
 - (ii) The velocity and displacement of weight '1' after 5 seconds from start if the system is released by rest.

11. Two masses of 30 kg and 20 kg are connected by an inextensible string passing over an ideal pulley as shown in figure. If the coefficient of friction between all contact surfaces is 0.16 then determine the pull required on block 30 kg to attain a velocity of 9.6 m/s during 6 second. Also determine the tension in the string.

	На	all Ti	icket Number :]			
	<u> </u>	da	20AC24T		<u></u>										R	-20	
	CO	ue.	I B.Tech.	ll Se	me	ster	Red	aulai	r Exc	amin	atic	ons (Data	bber (2021		
								eeri					0.010				
							-	mon	-	-							
	Mc	ax. N	Aarks: 70					****	****	*					Time	e: 3 Ho	ours
	Not	te: 1.	Question Paper	consi	sts of	ftwo	part				Part-]	B)					
		2	In Part-A, each Answer ALL th	quest	ion c	arrie	s Tw	vo ma	rk.			_ /					
								PAI	RT-A	<u> </u>							
						()	Com	pulso	ory q	uestic	on)						Blooms
1.	Ans	swei	ALL the follow	ing s	hort	ansv	wer o	quest	ions	(5 X 2	2 = 1	0M)			СО	Level
	,		ine center of mas			•										CO1	L1
	b)		y inverse piezo-e						•		ultras	onic	s?			CO2	L3
	c)		ssify magnetic m					neir pi	roper	ties.						CO3	L4
	d)	•	lain the principle		•											CO4	L2
	e)	IVIEI	ntion the applicat	ions (or a s	enso	or.									CO5	L1
									RT-B			. h		5 10	(0 M.		
		A	nswer <i>five</i> questi	ons i	by ch	OOSI	ng o	ne qu	estio	II IFO	m ea	cn u	mı (5 X 12	= 00 IVI2 Marks	CO	Blooms
						ſ									IVIAI KS	co	Level
	2.	a)	Obtain relation	notwo	on te	arque		NIT-I		nome	ntum	`			5M	CO1	L2
	۷.	b)	Discuss Newtor			•		•					refer	ence	7M		L2 L2
		0)		10101		mon		OR		i tiai i	rame			01100.	7 1 1 1	001	
	3.	a)	Write the signifi	cance	e of a	ı dive	erger	nce ar	nd cu	rl of a	vec	tor fie	eld.		5M	CO1	L1
		b)	Explain qualitati	vely	abou	t Fou	icau	lťs pe	endul	um.					7M	CO1	L2
							U	NIT–I	I								
	4.	a)	What are the fa	ctors	that	affec	t acc	oustic	s of k	buildir	ngs?				6M	CO2	L1
		b)	Suggest the ren	nedie	s to l	build			lly a	good	hall.				6M	CO2	L5
	_							OR			_		_	_			
	5.	a)	Discuss Nondes				-	thods	s to te	est sa	mple	s by	ultras	sonics	7M	CO2	L2
		b)	List the applicat	ions	of uit	rasoi									5M	CO2	L1
	6.	a)	Deduce Claussi	ue-M	osott	i rola		NIT-II in die		ice					7M	000	L3
	0.	b)	Write a short no												5M	CO3 CO3	L3 L1
		0)				01101	•	OR		•					0101	003	L 1
	7.	a)	Explain the orig	in of I	magr	netic	mon	nents	of m	agnet	ic ma	ateria	als.		7M	CO3	L2
		b)	Mention the app	olicati	ons	of ma	agne	tic de	vice	applic	atior	IS			5M	CO3	L1
							U	יו–דוא	V								
	8.	a)	Describe the co	nstru	ction	and	worl	king o	of He-	Ne la	ser.				9M	CO4	L2
		b)	Write industrial	and r	nedic	al ap	•		s of la	aser.					ЗM	CO4	L1
	-							OR			_						
	9.	a)	Discuss various	•••		•				on m	odes	•			7M	CO4	L2
		b)	Briefly explain the	ne los	sses	of ar									5M	CO4	L2
	10	2)	What are the ve	rious	tuno	s of		NIT-\							CM	005	1.4
	10.	a) b)	What are the va List the applicat					015 (6M 6M	CO5	L1 L1
		5)			5, 50			OR							UNI	CO5	L I
	11.	a)	Explain bimetall	ic str	ip ba	sed f			re se	nsor.					6M	CO5	L1
		ير b)	Write a note on		-		•			• •					6M	CO5	L1
								*** E	nd *'	**						-	

		~~	
Code: 20A223T	K-	20	
I B.Tech. II Semester Regular Examinations October 20 Basic Electrical and Electronics Engineering (Common to CE, CSE and AI & DS) Max. Marks: 70		3 Hou	ırs

 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 			
(Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$		СО	Blooms Level
a) Explain the relationships of R, L and C elements?		CO1	L1
b) What is the significance of back e.m.f?		CO2	L1
c) What is meant by slip of an induction motor?		CO3	L1
d) Draw the circuit symbol for a PNP and NPN transistors		CO4	L1
e) What are the main components of a CRT?		CO5	L1
PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =	60 Mar	ks)	
	Marks	со	Blooms Level
UNIT–I 2. a) Classify Network elements and give their volt-ampere relations.	6M	CO1	L1
 b) A circuit consists of 2 , 4 , 10 and 20 resistors connected in parallel. A total current of 10 A flows into the circuit supplied voltage is 30V, determine total resistance and current in each resistor. 	6M	CO1	L3
OR			
3. a) State and explain Kirchhoff's current law with suitable examples.	6M	CO1	L1
 b) Determine the current through 6 resistor and the power supplied by the for the circuit shown in figure 			
$20 \text{ V} \neq 2\Omega \qquad 3\Omega \neq 10$			
	6M	CO1	L3
4. a) Mention the applications of DC shunt and series motors?	6M	CO2	L1
b) A 6 pole wave wound dc generator is having 50 slots with 25 conductors	UNI	002	
per slot and rotating at 1500 rpm. The flux per pole is 0.015 wb, calculate the emf generated?	6M	CO2	L3
UK UK			

Hall Ticket Number :

Code: 20A223T

5.	a)	Derive an expression for the torque of a dc motor.	6M	CO2	L2
	b)	A 230 V motor has an armature circuit resistance of 0.6 ohm. If the full-			
		loaded armature current is 30A and no load armature current is 4A, find			
		the change in back e.m.f. from no load to full load.	6M	CO2	L3
		UNIT–III			
6.	a)	Explain how to determine the regulation of alternator by synchronous			
		impedance method	6M	CO3	L1
	b)	Explain the Principle operation of Transformer?	6M	CO3	L3
		OR			
7.	a)	Explain the principle of operation of 3-phase induction motor with neat			
		sketch?	6M	CO3	L1
	b)	A 230/400 V single phase transformer has 800 turns on primary. The			
		maximum flux density in the core is 1.5 Wb/m ² . Calculate the number of			
		turns on secondary, area of cross section and maximum flux in the core.	6M	CO3	L3
		UNIT–IV			
8.	a)	Explain with a neat diagram working of bridge wave rectifier?	6M	CO4	L2
	b)	Explain the operation of PNP transistor and draw its characteristics.	6M	CO4	L1
		OR			
9.	a)	Explain the working of a P-N Diode in forward bias and reverse bias?	6M	CO4	L1
	b)	Draw the circuit diagram of full wave rectifier and explain its operation	6M	CO4	L1
		UNIT–V			
10.	a)	Explain the principle of operation of the Cathode ray tube?	6M	CO5	L1
	b)	Write the applications of the CRO?	6M	CO5	L1
		OR			
11.	a)	What is the earthing? What is the purpose of earthing?	6M	CO5	L1
	b)	Discuss about the types of wires?	6M	CO5	L1
	,	*** End ***			

		Tieket Number]]								
		Ticket Number :												R-20			
C	.oae	e: 20A326T B Tech		em	este	er Re	aulo	ar F	kam	inat	ions		:tober 202	1			
		10.1001					-		al En					1			
				2 0.0					eerir	-	••••						
	Max	x. Marks: 70				·		-		- ,			1	lime: 3	Ηοι	Jrs	
N	oto:	1. Question Paper	oonai	ata of	f two	norte		***** •• t		Dart	B)						
11		2. In Part-A, each d				-				ai t-	D)						
		3. Answer ALL the	-						rt-B								
						(0		ART									
							-	•	quest	-	<i>.</i> _ `				F	Bloo	ms
1.		Answer ALL the f		-				-			`		10M)	CO	-	Lev	/el
	,	What are the chara						er me	tals a	and fl	uxes	?		1		Ľ	
		What are the stage			• .									2		Ľ	
	-	Define compressio Define ton of refrig					pacit	y of t	ne er	ngine).			3 4		L' L'	
		Compare the belt of												4 5		L L	
	0)				jour				D					0		-	•
		Answer <i>five</i> ques	tions	s hv o	hoos	sing (ART: mest		rom	each	unit	$(5 \times 12 - 60)$) Marks)		
		inswei jive ques		, by t		, mg	JIC G	lacor			cacii	um	$(\mathbf{J} \mathbf{X} \mathbf{I} \mathbf{Z} = 0)$	Mark		co	Blooms
							UNIT]								Level
2.	a)	Enumerate with n	eat s	sketch	nes tl				ames	s use	d in d	as v	veldina.	61	1	1	L2
	b)	Describe the oxy-										-	-	61		1	 L2
					-		OF	R		-							
3.	a)	Describe with ne	eat s	sketch	nes t	the 7	ΓIG ν	weldi	ng m	netho	d ar	nd gi	ive its speci		_		
	L)	applications.		ام مر م	h	:		:	41- 14-	I				6N	•	1	L2
	b)	Describe the sold	enng) and	braz		JNIT		in its	аррі	Icatio	ns		61	1	1	L2
4.	a)	Draw the lathe r	nach	ine a	and li				com	noone	ents	on it	. Describe t	he			
	~)	process various c												61	1	2	L2
	b)	Give an illustrative	expl	anati	on of	Rolli	ng pr	ocess	s, anc	l exp	ain it	s woi	rking principle	e. 6N	1	2	L2
_	、	– 1 · <i>A</i> · W			•										_	-	
5.	a) b)	Explain the milling													1	2	L2
	b)	Explain the Extru principle.	ISION	proc	ess	with	leat	ulagi	ama			liscu	ss the worki	ng 6N	1	2	L2
						ι	JNIT-	-111									
6.	a)	What are the diffe	erenc	es be	etwee	en Tv	vo sti	oke	engin	e an	d Foi	ur str	oke Engine?	6N	1	3	L2
	b)	Explain the working	ng of	4 str	oke	diese	l eng	ine.						61	1	3	L2
							OF										
7.	a)	What is the funct Reciprocating typ				•	sor?	And	ехр	lain	the v	vorki	ng principle	of 6N	1	3	L2
	b)	Explain the working		-			leng	ine.						61		3	L2
	,		0				JNIT-							-		-	
8.	a)	Explain the Vapo	ur ab	sorpt	ion r	efrige	eratio	n sys	stem	with	suital	ble d	iagrams.	81	1	4	L2
	b)	Discuss the basic	laws	s of th	herm	odyn	amic	s.						4N	1	4	L2
							OF	R									
9.	a)	What is ventilation						e com	nfort a	air co	nditio	ons?		6N		4	L2
	b)	Discuss the basic	laws	s of h	eat ti			\ <i>1</i>]					6N	1	4	L2
10	2)	Discuss the verie			of driv		JNIT sod f		o tran	emic	eion	ofn)war	~	л	F	10
10.	a) b)	Discuss the vario Write the advanta		•								•		6N /e. 6N		5 5	L2 L2
	5)		.903		-1000	. vant	ayes OF							J. UN	1	J	LZ
11.	a)	Discuss the abou	t Ear	th mo	ovina	mac	-							61	1	5	L2
	b)	Compare cross b	elt d	rive a	and c	open	belt	drive						io.			
		(ii) Direction of dr	iven	pulley	y. (iii)	Len	gth o	f belt	drive	es (iv) App	olicat	ion.	6N	1	5	L2
							***	End	***								

Hall Ticket Number :		7
Code: 20AC21T	R-20	
I B.Tech. II Semester Regular Examinations October Differential Equations and Vector Calculus (Common to All Branches) Max. Marks: 70	2021 Time: 3 Hour	s
**************************************		-
<u>PART-A</u> (Compulsory question)		
Answer ALL the following short answer questions $(5 \times 2 = 10M)$	(L) .	ooms evel
Evaluate $\frac{1}{D^2 - 4D + 4} xe^{2x}$.	CO1	L2
Solve the Euler's equation $x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = 0$.	CO2	L3
Find the general solution of $p+q = pq$	CO3	L2
Prove that $\nabla . \overline{r} = 3$	CO4	L3
State Green's theorem.	CO5	L3
PART-B	- (0 Morka)	
Answer <i>five</i> questions by choosing one question from each unit (5 x 12	Marks CO	Bloo
UNIT–I		Lev
Solve $(D^2 - 4D)y = e^x + \sin 3x \cos 2x$.	12M co1	
OR		
Solve the following equation by the method of variation of parameters		
$\left(D^2+3D+2\right)y=e^x+x^2$	12M CO1	
UNIT–II		
Solve $(1+2x)^2 \frac{d^2y}{dx^2} - 6(1+2x)\frac{dy}{dx} + 16y = 8(1+2x)^2$	12M co2	2
OR	h	
In an L-C-R circuit, the charge q on a plate of a condenser is given $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = E \sin pt$. The circuit is tuned to resonance so	that	
$p^2 = \frac{1}{LC}$. If initially the current <i>i</i> and the charge <i>q</i> be zero, show that , for	small	
values of R/L, the current in the circuit at time t is given by $\frac{Et}{2L}\sin pt$		

		UNIT-III		
6.	a)	Solve $p(1+q) = qz$	6M	CO3
	b)	Solve $x(z^2 - y^2)p + y(x^2 - z^2)q = z(y^2 - x^2)$	6M	CO3
		OR	0101	003
7.		Solve by the method of separation of variables		
		$u_x = 2u_t + u$ where $u(x, 0) = 6e^{-3x}$	12M	CO3
		UNIT–IV		
8.	a)	Fine the directional derivative of $W(x, y, z) = xy + yz + zx$ in the direction of		
		$-2\vec{i} + \vec{j} + 2\vec{k}$ at the point (1, 2, 0).	6M	CO4
	b)	Find the angle between the surfaces		
		$x^{2} + y^{2} + z^{2} = 12$ and $x^{2} + y^{2} - z = 12$ at (2, 2, 2).	6M	CO4
		OR		
9.	a)	Find the constant a, b and c such that the vector field defined by		
		$\vec{F} = (4xy + az^3)\vec{i} + (bx^2 + 3z)\vec{j} + (6xz^2 + cy)\vec{k}$ is irrotational. With these values		
		of a, b and c determine a scalar function w such that $\vec{F} = \nabla w$.	8M	CO4
	b)	Prove that $\left(\frac{\vec{r}}{r^3}\right) = 0$		
			4M	CO4
10.		UNIT-V		
10.		Verify Gauss's divergence theorem for $\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$		
		take over the rectangular parallelepiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$.	12M	CO5
4.4		OR		
11.		Verify Stokes' theorem for the vector field $\vec{F} = (2x - y)\vec{i} - yz^2\vec{j} - y^2z\vec{k}$ over the		
		upper half surface of $x^2 + y^2 + z^2 = 1$ bounded by its projection on the <i>xy</i> -	4014	
		plane. *** End ***	12M	CO5
		Eliu		