| B.Tech. || Semester Regular Examinations October 2021
Engineering Mechanics
(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$)
a) Is there a difference between the number of general equilibrium equations available for a concurrent and for a non-concurrent system of coplanar forces? Explain.
b) State Varignon's theorem.
c) Can the centroid of a volume coincide with the centroid of its cross section? Explain with example.
d) Define angular displacement angular velocity angular acceleration
e) A rocket of weight 24 N is fired by an army man by using a portable rocket launcher of weight 180 N . If the rocket launcher is recoiled with a velocity of $0.8 \mathrm{~m} / \mathrm{sec}$, determine the velocity of rocket during launching.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. A lamp weighing 5 N is suspended from the ceiling by a chain. It is pulled aside by a horizontal cord until the chain makes an angle of 60° with the ceiling as shown in Fig. Find the tensions in the chain and the cord by applying Lami's theorem.

OR
3. Two spheres, each of weight 1000 N and of radius 25 cm rest in a horizontal channel of width 90 cm as shown in Fig. Find the reactions on the points of contact A, B and C.

4. Determine the forces in all the memers of the truss shown in Fig. and indicate the magnitude and nature of forces on the diagram of the truss. All inclined members are at 60° to horizontal and length of each member is 2 m .

OR
5. Determine the forces in all the members of the truss shown in figure. Indicate the nature of forces using the convention tension as positive and compression as negative.

6. Find the centre of gravity of the I-section shown in Fig.

7. Find the moment of inertia of the shaded area shown in figure about the axis $A B$.

UNIT-IV
8. A particle moves along a straight line so that its displacement is metre from a fixed point is given by, $\mathrm{S}=2 \mathrm{t}^{3}+4 \mathrm{t}^{2}-6 \mathrm{t}+8$ Find : (i) velocity at start, (ii) velocity after 5 seconds, (iii) acceleration at start and (iv) acceleration after 5 seconds.

OR

9. Two trains A and B leave the same station on parallel lines. A start with a uniform acceleration of $0.17 \mathrm{~m} / \mathrm{s}^{2}$ and attains a speed of $24 \mathrm{~km} / \mathrm{hr}$, when stream is reduced to keep the speed constant. B leaves 40 seconds after, with uniform acceleration of $0.3 \mathrm{~m} / \mathrm{s}^{2}$ to attain a maximum speed of $48 \mathrm{~km} / \mathrm{hr}$. When it will overtake A?

UNIT-V

10. A system of frictionless pulleys carries two weights hung by inextensible cords as shown in figure. Find
(i) The acceleration of the weights and tension in the cords
(ii) The velocity and displacement of weight ' 1 ' after 5 seconds from start if the system is released by rest.

OR

11. Two masses of 30 kg and 20 kg are connected by an inextensible string passing over an ideal pulley as shown in figure. If the coefficient of friction between all contact surfaces is 0.16 then determine the pull required on block 30 kg to attain a velocity of $9.6 \mathrm{~m} / \mathrm{s}$ during 6 second. Also determine the tension in the string.

Code: 20AC24T
| B.Tech. || Semester Regular Examinations October 2021
Engineering Physics
(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions	$(5 \times 2=10 \mathrm{M})$	CO	Blooms Level
a) Define center of mass of a body.	CO	L 1	
b) Why inverse piezo-electric method is used to produce ultrasonics?	CO 2	L 3	
c) Classify magnetic materials based on their properties.	CO	L	
d) Explain the principle of an optical fiber.	CO	L 2	
e) Mention the applications of a sensor.	CO	L 1	

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I
2. a) Obtain relation between torque and angular momentum. 5 M co1 L2
b) Discuss Newton's laws in inertial and non-inertial frames of reference. $\quad 7 \mathrm{M} \quad \mathrm{CO1} \quad \mathrm{~L} 2$

OR
3. a) Write the significance of a divergence and curl of a vector field. $5 \mathrm{M} \quad \mathrm{CO1} \quad \mathrm{~L} 1$
b) Explain qualitatively about Foucault's pendulum. 7M CO1 L2

UNIT-II
4. a) What are the factors that affect acoustics of buildings? 6M CO2 L1
b) Suggest the remedies to build acoustically a good hall. 6M co2 L5

OR
5. a) Discuss Nondestructive testing methods to test samples by ultrasonics 7M CO2 L2
b) List the applications of ultrasonics. 5 M CO2 L1

UNIT-III
6. a) Deduce Claussius-Mosotti relation in dielectrics. 7M co3 L3
b) Write a short notes on electronic polarization. 5 M co3 L1

OR
7. a) Explain the origin of magnetic moments of magnetic materials. $7 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2$
b) Mention the applications of magnetic device applications 5 M co3 L1

UNIT-IV
8. a) Describe the construction and working of $\mathrm{He}-\mathrm{Ne}$ laser.

9M CO4 L2
b) Write industrial and medical applications of laser. 3 M CO4 L1

OR
$\begin{array}{llll}\text { 9. a) } & \text { Discuss various types of optical fibers based on modes. } & 7 \mathrm{M} & \mathrm{co4} \\ \text { b) Briefly explain the losses of an optical fiber. } & 5 \mathrm{M} & \mathrm{co4} & \mathrm{~L} 2\end{array}$
10. a) What are the various types of sensors? $\quad 6 \mathrm{MNIT-V}$ cos L1
b) List the applications of sensors. 6 M CO5 L1

OR
11. a) Explain bimetallic strip based temperature sensor. $6 \mathrm{M} \quad \operatorname{CO5} \quad \mathrm{L} 1$
b) Write a note on Hall effect sensor. 6M co5 L1
| B.Tech. || Semester Regular Examinations October 2021

Basic Electrical and Electronics Engineering

(Common to CE, CSE and AI \& DS)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
 (Compulsory question)

1. Answer ALL the following short answer questions
a) Explain the relationships of R, L and C elements?
$(5 \mathrm{X} 2=10 \mathrm{M})$
CO
Blooms
Level
b) What is the significance of back e.m.f?

CO1
c) What is meant by slip of an induction motor?

CO2
d) Draw the circuit symbol for a PNP and NPN transistors

CO3
e) What are the main components of a CRT?

CO4

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Classify Network elements and give their volt-ampere relations.
b) A circuit consists of $2,4,10$ and 20 resistors connected in parallel. A total current of 10 A flows into the circuit supplied voltage is 30 V , determine total resistance and current in each resistor.

6M CO1 L3
OR
3. a) State and explain Kirchhoff's current law with suitable examples.

6M CO1
b) Determine the current through 6 resistor and the power supplied by the for the circuit shown in figure

$$
6 \mathrm{M} \quad \mathrm{CO} 1
$$

UNIT-II

4. a) Mention the applications of DC shunt and series motors?

6 M CO 2
b) A 6 pole wave wound dc generator is having 50 slots with 25 conductors per slot and rotating at 1500 rpm . The flux per pole is 0.015 wb , calculate the emf generated?

6M CO2 L3
5. a) Derive an expression for the torque of a dc motor.
b) A 230 V motor has an armature circuit resistance of 0.6 ohm . If the fullloaded armature current is 30 A and no load armature current is 4 A , find the change in back e.m.f. from no load to full load.

UNIT-III

6. a) Explain how to determine the regulation of alternator by synchronous impedance method
b) Explain the Principle operation of Transformer?

OR

7. a) Explain the principle of operation of 3-phase induction motor with neat sketch?
b) A $230 / 400 \mathrm{~V}$ single phase transformer has 800 turns on primary. The maximum flux density in the core is $1.5 \mathrm{~Wb} / \mathrm{m}^{2}$. Calculate the number of turns on secondary, area of cross section and maximum flux in the core.

6 M CO 3

UNIT-IV

8. a) Explain with a neat diagram working of bridge wave rectifier?
b) Explain the operation of PNP transistor and draw its characteristics.

OR

9. a) Explain the working of a P-N Diode in forward bias and reverse bias?

6M CO4
6 M CO 4

UNIT-V

10. a) Explain the principle of operation of the Cathode ray tube?
$6 \mathrm{M} \mathrm{CO5}$
b) Write the applications of the CRO?

OR

11. a) What is the earthing? What is the purpose of earthing?
$6 \mathrm{M} \mathrm{CO5}$
$6 \mathrm{M} \mathrm{CO5}$
b) Discuss about the types of wires?
$6 \mathrm{M} \quad \mathrm{CO} 2 \quad \mathrm{~L} 3$
6 M CO 2

6 M CO 3
6 M CO 3
b) Draw the circuit diagram of full wave rectifier and explain its operation

6 M CO
6 M CO 4

6M CO5

> Hall Ticket Number :

Code: 20A326T
| B.Tech. || Semester Regular Examinations October 2021

Basic Mechanical Engineering

(Civil Engineering)
Max. Marks: 70

Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1.	Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$)	CO	Blooms Level
a)	What are the characteristics features of filler metals and fluxes?	1	L1
b)	What are the stages of casting process?	2	L1
c)	Define compression ratio and cubic capacity of the engine.	3	L1
d)	Define ton of refrigeration and COP.	4	L1
e)	Compare the belt drive and gear drive.	5	L1

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

2. a) Enumerate with neat sketches three types of flames used in gas welding.

6M 1 L2
b) Describe the oxy-acetylene gas welding technique and give the applications.
6M 1 L2

OR
3. a) Describe with neat sketches the TIG welding method and give its specific applications.
6M 1 L2
b) Describe the soldering and brazing process with its applications
6M 1 L2

UNIT-II

4. a) Draw the lathe machine and list the various components on it. Describe the process various operations performed on a lathe.
6M 2 L2
b) Give an illustrative explanation of Rolling process, and explain its working principle. $6 \mathrm{M} \quad 2 \quad \mathrm{~L} 2$

OR
5. a) Explain the milling process with neat diagram and also discuss the working principle. $6 \mathrm{M} \quad 2 \quad \mathrm{~L} 2$
b) Explain the Extrusion process with neat diagram and also discuss the working
principle.

UNIT-III

6. a) What are the differences between Two stroke engine and Four stroke Engine?
6M 3 L2
b) Explain the working of 4 stroke diesel engine.
6M 3 L2
7. a) What is the function of a compressor? And explain the working principle of Reciprocating type air compressor.
6M 3 L2
b) Explain the working of 2 stroke diesel engine.
$6 \mathrm{M} \quad 3 \quad$ L2
8. a) Explain the Vapour absorption refrigeration system with suitable diagrams.

8M $4 \quad$ L2
b) Discuss the basic laws of thermodynamics.
$4 \mathrm{M} \quad 4 \quad \mathrm{~L} 2$
OR
9. a) What is ventilation? How does it affect the comfort air conditions?

6M 4 L2
b) Discuss the basic laws of heat transfer.
6M 4 L2

UNIT-V

10. a) Discuss the various types of drives used for the transmission of power.
$6 \mathrm{M} \quad 5 \quad$ L2
b) Write the advantages and Disadvantages of chain drive over belt and rope drive. $6 \mathrm{M} \quad 5 \quad \mathrm{~L} 2$

OR

11. a) Discuss the about Earth moving machines.

6M 5 L2
b) Compare cross belt drive and open belt drive on the basis of: (i) Velocity ratio. (ii) Direction of driven pulley. (iii) Length of belt drives (iv) Application.
$6 \mathrm{M} \quad 5 \quad \mathrm{~L} 2$
\square

Code: 20AC21T

| B.Tech. || Semester Regular Examinations October 2021
Differential Equations and Vector Calculus
(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $(5 \times 2=10 \mathrm{M}) \quad$ co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Evaluate $\frac{1}{D^{2}-4 D+4} x e^{2 x}$.
b) Solve the Euler's equation $x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=0$.
c) Find the general solution of $p+q=p q$ CO3 L2
d) Prove that $\nabla \cdot \bar{r}=3$ CO4 L3
e) State Green's theorem. CO5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
Marks CO

UNIT-I

2. Solve $\left(D^{2}-4 D\right) y=e^{x}+\sin 3 x \cos 2 x$.

12M CO1

OR

3. Solve the following equation by the method of variation of parameters

$$
\left(D^{2}+3 D+2\right) y=e^{x}+x^{2}
$$

UNIT-II

4.

Solve $(1+2 x)^{2} \frac{d^{2} y}{d x^{2}}-6(1+2 x) \frac{d y}{d x}+16 y=8(1+2 x)^{2}$
12M CO2

OR

5. In an L-C-R circuit, the charge q on a plate of a condenser is given by $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=E \sin p t$. The circuit is tuned to resonance so that $p^{2}=\frac{1}{L C}$. If initially the current i and the charge q be zero, show that, for small values of R / L, the current in the circuit at time t is given by $\frac{E t}{2 L} \sin p t$

Code: 20AC21T

UNIT-III

6. a) Solve $p(1+q)=q z$
b) Solve $x\left(z^{2}-y^{2}\right) p+y\left(\mathrm{x}^{2}-z^{2}\right) \mathrm{q}=z\left(\mathrm{y}^{2}-x^{2}\right)$

6M CO3
6M CO3

OR

7. Solve by the method of separation of variables $u_{x}=2 u_{t}+u$ where $u(x, 0)=6 e^{-3 x}$

12M CO3

UNIT-IV

8. a) Fine the directional derivative of $\phi(x, y, z)=x y+y z+z x$ in the direction of $-2 \vec{i}+\vec{j}+2 \vec{k}$ at the point ($1,2,0$).

6M CO4
b) Find the angle between the surfaces
$x^{2}+y^{2}+z^{2}=12$ and $x^{2}+y^{2}-z=12$ at $(2,2,2)$.
$6 \mathrm{M} \mathrm{CO4}$

OR

9. a) Find the constant a, b and c such that the vector field defined by $\vec{F}=\left(4 x y+a z^{3}\right) \vec{i}+\left(b x^{2}+3 z\right) \vec{j}+\left(6 x z^{2}+c y\right) \vec{k} \quad$ is irrotational. With these values of a, b and c determine a scalar function ϕ such that $\overrightarrow{\mathrm{F}}=\nabla \phi$.

8M CO4
b) Prove that $\left(\frac{\vec{r}}{r^{3}}\right)=0$

4M CO4

UNIT-V

10. Verify Gauss's divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \vec{i}+\left(y^{2}-z x\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}$ take over the rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.

12M CO5

OR

11. Verify Stokes' theorem for the vector field $\vec{F}=(2 x-y) \vec{i}-y z^{2} \vec{j}-y^{2} z \vec{k}$ over the upper half surface of $x^{2}+y^{2}+z^{2}=1$ bounded by its projection on the $x y$ plane.
