Hall	Tick	et Number :	1
Code	• 70	R-17	
Coue	. /6	I B.Tech. II Semester Regular Examinations May 2018	
		Data Structures	
		(Common to All Branches)	
		arks: 70 ver all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********* UNIT-I	Jrs
1.	a)	Define pointer and explain about pointer arithmetic.	7M
	b)	List the four dynamic memory allocation functions in C and give their syntax	
		with examples.	7M
		OR	
2.	a)	What are the features and uses of pointers?	7M
	b)	Write a C program to add two numbers using command line arguments.	7M
3.	a)	UNIT–II Differentiate between structure and union.	6M
0.	⊆, b)	Give the tracing of quick sort algorithm for the data [1, 2, 3, 4, 5, 6, 7, 8] to be	0
	- /	sorted in ascending order. Discuss its time complexity.	8M
		OR	
4.	a)	Write a program in C to copy the contents of one file to another.	7M
	b)	Write an iterative algorithm for binary search and discuss its time complexity.	7M
5.	a)	Convert the following infix expressions to postfix expressions.	
		i) A + B * C + D ii) (A + B) * (C + D) iii) A + B + C + D	6M
	b)	Write a program in C to implement operations on queue.(Use pointers)	8M
•	、	OR	
6.	a)	Write an algorithm to evaluate a postfix expression.	8M
	b)	Give the advantages and disadvantages of recursion.	6M
7.	a)	Write a C program for insertion operation in a singly linked list.	7M
	b)	Write C functions for insertion and deletion operations in doubly linked list.	7M
		OR	
8.	a)	Write a recursive program to reverse the given singly linked list.	8M
	b)	Give the applications of circular linked list.	6M
9.	a)	Define binary search tree. Write a C function to insert a new node in a binary search tree.	8M
	b)	Give the applications of graphs.	6M
	,	OR	
10.	a)	Write a C function to search a given key in a given binary search tree.	8M
	b)	Define the following regarding graphs.	
		i) Undirected graph ii) In degree iii) Digraph ***	6M

Hall	Tick	et Number :												1
Code	: 7 6	321	<u> </u>	1		1	1	1	<u>]</u>	<u> </u>			R-17	7
Cout	. /0	I B.Tech	n. II Sem	este	er Re	egu	lar E	xan	ninc	atior	is M	ay 20	218	
			Elec			-								
May		arks: 70		(Cc	mm	non t	o ee	E &	ECE)			Time: 3 H	
		ver all five uni	ts by cho	oosing	g on	•	****		m ec	ach u	vnit (5 x 14		
1.	a)	Explain the		•				tra	ansist	tor	biasi	ng. V	/erify thes	
		requirement										•	, .,	8M
	b)	An NPN Sili V _{cc} =10V, R collector to b	_c =2K. Th	e bia	s is (obtai	ned l	by co	nneo	cting				
				u 1) Q	1 01		OF	•	40101	, U				0.01
2.	a)	What is the stability in tr		-	/ in	trans	sistor	rs? (Obtai	n the	e coi	nditior	n for therma	al 8M
	b)	Design a sel with the follo			•		=16V	, V _{be} =					•	
3.	2)	With neat	ekoteboe	no						nlain	tho	drair	8 transfe	
5.	a)	characteristi				-	-			-	uie	uran		10M
	b)	Establish a i	elation b	etwee	en th	e thr	ee Jl	ET	parar	netei	rs, μ,	r_d and	d g _m .	4M
							OF	R						
4.	a)	With neat characteristi				-	•			plain	the	drair	n & transfe	er 10M
	b)	Compare be	etween JF	ET a	nd N	10SF	EL							4M
F	2)	Evaloia tha	working	ftrom	aiata		UNI		iar					714
5.	a) b)	Explain the Explain DC	•					•		vint				7M 7M
	5)			anu		ngriii	OF		a po	/// 10				7 101
6.	a)	Explain the v	vorking of	Sing	le Sta	age /	Ampli	fier w	ith n	eat di	iagra	ms an	d waveforms	5 7M
	b)	Explain AC	Load line	and	the s	signifi	icanc	e of	Q-po	oint				7M
_					_		UNIT							
7.		Explain the the expressi	• •			•				•			0	e 14M
		the expressi		v , m	Jut n	npec	OF			սւբսւ	imp	Suaric	Ε Ζ ₀ .	14101
8.		Explain the	principle	of C	D ar	nplifi			e he	lp of	circu	uit dia	gram. Deriv	е
		the expressi	ons for A	v , inj	out ir	npec	dance	e Z _i a	nd o	utput	impe	edanc	e Z _o .	14M
~	-)		00001	lor -		- با دارد	UNI		- ا ها: م	n '	al:			4014
9.	a) b)	Explain the Explain the					•				ulag	iam		10M 4M
	0)			n r HC		oue	OF		ulay	naill				+111
10.	a)	Explain the	construct	ion ai	nd w	orkin			iel Di	iode v	with 1	neat d	iagrams	10M
	b)	Explain the					•						-	4M
						*	**							

Hall	Tick	et Number :									
Code:	7G(C22 R-17									
0000		I B.Tech. II Semester Regular Examinations May 2018									
		Engineering Chemistry									
		(Common to EEE & ECE)									
		Time: 3 Hour Time: 3 Hour a_{1}	ſS								
AI	IISVVE	er all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********									
		UNIT–I									
1.	a)	Explain in detail how hardness of a water sample is estimated by EDTA method.	8M								
	b)	A sample of hard water contains the following dissolved salts per liter. Ca(HCO3)2=16.2 mgs, Mg(HCO3)2=14.6 mgs, CaCl2=111 mgs, CaSO4=1.36 mgs,									
		turbidity=10mgs. Calculate the temporary permanent and total hardness of water									
		in ppm.	6M								
		OR									
2.	a)	How do you determine dissolved oxygen present in a water sample by Winkler's method?	7M								
	b)	What is desalination? Explain desalination of water by reverse osmosis process.	7M								
	0)		7101								
3.	a) In what way Conductometric titrations are advantageous than volumetric titration										
		Explain the curve obtained in the Conductometric titration between strong acid vs	7M								
	b)	strong base. Define fuel cell? Explain the working of Hydrogen oxygen fuel cell?	7M								
	0)	OR	7 101								
4.	a)	Explain the rusting of iron with the help of electrochemical theory of corrosion?	6M								
	b)	Explain Sacrificial anode and Impressed current cathodic protection in detail.									
		Write their applications UNIT-III	8M								
5.	a)	Write the differences between addition and condensation polymerization?	6M								
	b)	Explain the preparation, properties and uses of Bakelite	8M								
	-	OR									
6.		Explain the preparation, properties and engineering applications of Buna-S, Buna-									
		N and polyurethane rubber.	14M								
7.		What is calorific value of a fuel? How calorific value of a solid fuel is determined									
		using bomb calorimeter? Explain how corrections are made?	14M								
•	,	OR									
8.	a) b)	What is knocking? What are its adverse effects? How can it be prevented?	6M								
	b)	Explain in detail with a neat flow chart the method of preparation of synthetic petrol by Fischer –Tropsch process	8M								
		UNIT-V	OW								
9.	a)	What are the raw materials used for manufacturing of Portland cement? Describe									
		the method of manufacturing of Portland cement by wet process with the help of									
	L.)	a rotary kiln.	8M								
	b)	Explain the chemical reactions involved in setting and hardening process of cement?	6M								
		OR									
10.	a)	Explain the important properties of a refractory material?	7M								
	b)	Present a brief account on the following properties of lubricants									
		i) Flash and fire point ii) Mechanical stability iii) cloud and pour point	7M								

Hall 7	Ficke	et Number :													R-17	
Code	: 7G	C24	1							_]	1			L		
		I B.Tech	n. II S				-					ns M	ay 20	18		
				-			-			natic nche						
		ırks: 70 er all five uni	ts by	cho	osing	g on	e qu	estio	n fro	m ec	ach u	unit (5 x 14		e: 3 Hou Aarks)	irs
			·			-		*****								
1.	a)	Trace the cu	irve	$y^{2}(2$	a-x) = x	c ³		<u> </u>	I						7M
	b)	Evaluate ∬	r sin	, d	rd"	over	the	cardi	oid	r = a	ı (1 —	cos ") above	e the ir	nitial	
	line.												7M			
						а	$\sqrt{a^2}$	\overline{OF}	2							
2.	a)	Evaluate the	e dou	ble ii	ntegr	al ∫	\int_{0}	$(x^{2} -$	$+y^{2}$))dxdy	by	chan	ging in	to pola	ar	
		coordinates														7M
	b)	Find the volu			ded	by th	e cy	linde	$\mathbf{r} x^2$	$+y^2$	= 4	and	the pla	ines		
		y + z = 4 and	a z, =	= 0												7M
									T–II							
3.	a)	Find the Lap	blace	tran	sforn	n of a	e ^{4t} sii	n 2t of	$\cos t$							7M
	b)	Evaluate \int_{0}^{∞}	$t e^{-3t}$	sin t	dt	appl	ying	Lapl	ace t	transf	form.					714
		0						OF								7M
4.	a)	Find the Lap	lace	tran	sforn	n of	sin 3	$t \cos \frac{1}{2}$	<u>t</u>							714
		Evaluate L						ı		uncti	on of	perie	od 2	given l	ov	7M
	,	$f(t) = \begin{cases} \sin t \\ 0 \end{cases}$	-		_	-		•				•		0	,	
		$\int (l) = \int 0$, <i>f</i>	< t ·	< 2f											7M
								UNI	T–III							
5.	a)	Find the inve	erse	Lapla	ace t	ransf	orm			2						
		Applying La						5	-	515		ation				7M
	0)	$\frac{d^3y}{dt^3} + 2\frac{d^2y}{dt^2}$														
		$\frac{dt^3}{dt^3} + 2\frac{dt^2}{dt^2}$	dt	2	y = 0	, y(0) =			= y ((0) =	2				7M
0	-)							OF		\$						
6.	a)	Find the inve	erse	Lapla	ace t	ransf	orm	of $\frac{1}{s^2}$	$\frac{1}{2} + 4$	s + 5						7M
	b)	Applying La									l equ	ation				
		$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + $	- 5 <i>x</i> =	e^{-t}	sin <i>t</i> ,	<i>x</i> (0) = 0	, <i>x</i> ′	(0) =	-1						7M

UNIT-IV
7. a) Find the directional derivative of the function
$$f = x^2 - y^2 + 2z^2$$
 at the point $P = (1, 2, 3)$ in the direction of PQ where $Q = (5, 0, 4)$ 7M
b) Show that $F = (e^x \cos y + yz)i + (xz - e^x \sin y)j + (xy + z)k$ is conservative over its natural domain and find potential function for it. 7M
OR
8. a) Establish the relation $\nabla^2 [f(r)] = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$ where $r = |\bar{r}|$ 7M
b) Evaluate $\int_s \bar{F} \cdot \bar{n} \, dS$ where $\bar{F} = 18z\bar{i} - 12\bar{j} + 3y\bar{k}$ and S is the part of the surface of the plane $2x + 3y + 6z = 12$ located in the first octant. 7M
9. a) Applying divergence theorem evaluate $\iint_s x dy dz + y dz dx + z dx dy$ where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ 7M
b) Evaluate by Greens theorem $\oint_C (y - \sin x) dx + \cos x \, dy$ where C is the triangle enclosed by the lines $y = 0$, $x = \frac{f}{2}$ and $f y = 2x$ 7M

10. Verify stokes theorem for the vector field $\overline{F} = (2x - y)\overline{i} - yz^2\overline{j} - y^2z\overline{k}$ over the upper half of the surface $x^2 + y^2 + z^2 = 1$ bounded by its projection on the xy – plane. 14M

Hall Tic	ket Number :												R-17]
Code: 70														
	IB.Tech.				-				ions	s Mo	ay 2	018		
			Geo					_						
	1 70	(Co	omm	on to	D EEE	E & E	ECE(Shift	-11))				0.11	
Max. Ma Answ	arks: 70 ver all five units	s by cho	osing		que *****		fron	n ead	ch ui	nit (ł	5 x 14		me: 3 Hours 0 Marks)	
						UN	IT–I							
1.	a) Construct	t a hepta	igon o	f side	e 35r	nm.								7M
	b) Inscribe a	hexagor	n in a o	circle	of 90)mm	diam	eter	with t	two c	of its a	sides	vertical.	7M
						OR	2							
2.	Trace the path	h of a po	int on	the c	ircur	nfere	ence	ofac	circle	of d	iame	eter 6	0mm when	
	the circle rolls		•••	•		•				•				
	the curve. Dra	aw a tang	gent to	o the			•	t on	it 35r	nm f	rom	the s	traight line.	14M
0	A stasialat lines					JNIT						\	a in france of	
3.	A straight-line			•										
	V.P. The other end is 60mm from both V.P and H.P. Draw its projections and determine its true inclinations with the V.P and the H.P.													14M
			ination											1 110
4.	A line AB is ir	nclined a	at 40°	to th	e H.F	•••	-	5mm	abo	ve th	e H.	P ar	d 30mm in	
	front of the V	.P. The	top vie	ew of	f the	line	is 70	mm	long	and	is in	cline	ed at 30º to	
	XY. Draw the	projectio	ons ar	nd de	term	ine it	s tru	e inc	linati	ons	with '	V.P.		14N
					ι	JNIT-	-111							
5.	A circle of 70r				•							•		
	long minor ax			•						XY. I	Draw	the	projections	
	of the circle a	nd deter	mine	its ind	clinat			ne V	.P.					14M
6	Draw the proj	actions (of a sc	nuaro	lami	OR ina o		nm e	ida w	han	a eir	10 of	the square	
0.	lamina is in th			•									•	
	at 45° to the \													14M
					U	JNIT-	-IV							
7.	A hexagonal	prism is	restir	ng on				orner	s of	its b	ase	on th	ne HP. The	
	longer edge o	containin	g that	corn	er is	incli	ned a	at 45	⁰ to 1	the b	ase.	The	axis of the	
	prism makes	an angle	e of 30	⁰ to t	he V	.P. D	raw	the p	rojec	ctions	s of t	he s	olid.	14M
				~ ~			-							
8.	A hexagonal									-				
	edges in the			ed at	45°	to tr	ie v.	Ρ. Δ	Jraw	its p	rojeo	ction	s when the	14M
	apex is neare		V.F.			JNIT-	V							1410
9	A square pyra	mid 40n	nm ha	se si				lona	axis	resta	s with	n its k	ase on the	
0.	H.P. Draw its				uo ui		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	long	ano	10010				14M
						OR	2							
10.	Draw the proje	ections (front v	/iew l	ookir	-		direct	ion c	of the	arro	w, to	p view and	
	the left side vi					•								
				XX	6	0 1	30	80						
			1		K		\mathbf{X}	30						

