		,	, ,	, ,	,					
Hall	Ticket Number :							Γ		
Code:	7G523-B								R-17	
I B.Te	ch. II Semester	Regula	ır & Sup	plemer	ntary E	Examir	ation	is Mo	ay/June 2	019
				etrical [_				
		((Commo	n to EEE	and E	CE)				
	Marks: 70	s by obos	sing on	a au catio	n from	o a ob	nit / E	v 1 / -	Time: 3 H	
Al	nswer all five units	, by choc	osing one	*******	n iioin	eachu	nii (5)	X 14 -	- 70 Marks)	
				UNI [*]	T–I					
1.	Draw a straight	line AB o	f any len	gth. Mark	a point	F, 65 n	nm fror	m AB	. Trace the	
	path of a point P	' moving i	n such a	way that t	he ratio	of its dis	stance	from	the point F,	
	to its distance fro				•		e curve	e. Dra	w a normal	
	and tangent to t	ne curve a	at a point	which is	45 mm 1	from F.				14M
				OR						
2.	A coin of 40 mm	diameter	rolls ove	r horizont	al table	without	slippin	g. A p	point on the	
	circumference o							_		14N
	after one compl			w and na	ame of t	the curv	e. Drav	w a ta	angent and	
	normal at any po	on the	e curve.							
•	5			UNIT				40		
3.	Draw the projec H.P and 50 mm				•	•		•		
	of V.P. Determin							u 20 i	IIIIII III IIOIIL	14M
	or v.r . Botomiii	io trio truc		OR	0 101010	nioo piai	10.			
4.	The distance be	otwoon th	o and pro		f a lina	ic 60 m	m On	0.000	lie 15 mm	
٦.	above H.P and		•	•						
	mm in front of V									14M
			. ,	UNIT			J			
5.	A regular hexag	onal plan	e of 45 n			rner on	H.P. a	ınd its	s surface is	
	inclined at 45°	•					•			
	corner, which is	on the H.	P, makes	30° with	V.P.					14M
				OR						
6.	A circle of 40 mi	m diamete	er, is resti	ing on H.F	on a p	oint, wit	h its su	ırface	inclined at	
	30° to H.P. Drav	w the proj	jections c	of the circ	le, whe	n the top	p view	of the	e diameter,	
	through the rest	ing point,	and make	es an ang	le of 45	o with xy	/ line.			14M
				UNIT	-IV					
7.	Draw the projec	tions of a	square p	rism, side	of bas	e 30 mn	າ and a	ixis 6	0 mm long,	
	resting with one	_			I.P. Its a	axis is in	clined a	at 30°	to H.P and	
	the top view of t	he axis at	45° to <i>x</i> y	/line.						14M
				OR						
8.	Draw the project		•							
	mm long, which	is resting	with a sl	ant face	on H.P	such tha	it, the a	axis is	s parallel to	. -
	V.P.									14M

Code: 7G523-B

UNIT-V

9. Draw the orthographic views of the following Fig. 1. All dimensions are in mm.

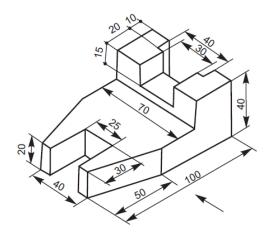


Fig. 1.

14M

OR

10. a) Draw an isometric drawing of a cone with 40 mm diameter of the base and a 55 mm long axis, when it is resting on its base.

7M

b) Draw the isometric view of a hexagonal prism, with side of base 25 mm and axis 60 mm long. The prism is resting on its base on H.P, with an edge of the base parallel to V.P.

7M

Ha	ll Ti	ket Number :								
Cod	e: 7	G121 R-17								
I B.7	ГесI	n. II Semester Regular & Supplementary Examinations May/June 2	019							
		Data Structures								
Ма	v 1/	(Common to All Branches) arks: 70 Time: 3 Ho	n ire							
		wer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	JUI 3							

4	۵)	What is meant by a pointer? Write a pregram to even the values of two variables								
1.	a)	What is meant by a pointer? Write a program to swap the values of two variables using pointers.	7M							
	b)	Write a program to show the usage of pointer to structure.	7M							
	D)	OR	, , , ,							
2.	a)	Demonstrate the use of &(address of) and *(value at address) operators	7M							
۷.	b)	Write a program to show a function returning pointer.	7M							
	D)	UNIT-II	<i>1</i> IVI							
3.	a)	What is a structure? Explain the syntax of Structure declaration with example	7M							
0.	b)	How Selection sort is different from bubble sort?	7M							
	۵)	OR								
4.	a)	Define Union. Explain its general syntax with one example. 7								
••	b)	Arrange the following integers in ascending order using Merge sort procedure.	7 101							
	D)	39,48,62,18,23,34,58,12.	7M							
		UNIT-III								
5.	a)	Explain stack with basic Operations (push and pop).	7M							
	b)	Design the procedure to count number of parenthesis in an expression using Stack.	7M							
	,	OR								
6.		Compare Linear Queue and Circular Queue. Write a program to insert and delete								
		from a circular queue.	14M							
		UNIT-IV								
7.		Implement Insertion, Deletion and search operations at any position in a singly								
		linked list.	14M							
		OR								
8.	a)	Write insertion and deletion functions for the doubly linked list.	7M							
	b)	Summarize Circular Linked List	7M							
		UNIT-V								
9.	a)	Construct a Binary tree T by using the following in order and post order traversals of T.								
		In order: DKIBAEGHJFC	71./							
	ل ا	Post Order: K D I E A G B F C J H.	7N							
	b)	Explain various methods of representing graphs in memory. OR	7M							
10.		What is Binary Search Tree (BST)? How do we do search in BST? Write a								
10.		procedure for insertion and deletion operations on BST.	14M							

			T 1												
		et Number :												R-17	
Code I B Te		321 . Il Semeste	er Rec	ıular	& Sur	ople	mer	ntary I	=xaı	mir	atio	ns N	Mav/li	ine 20)19
1 0.10	5011	. 11 001110310	_			•		and () 13 TV	10,7,5	0110 20	, , ,
					_	_		E & EC							
_		arks: 70 er all five uni	ts by c	:hoosi	ng on		estio:	n from	eac	ch u	nit (5 x 14		e: 3 Ho Marks)	urs
							JNIT-	_i							
1.	a)	Discuss bias	ing of I	3JT ar	nd its ty										7N
	b)	With a neat	•		•				self	bia	s of ⁻	Γransi	stor.		7N
	,			J	•		OR								
2.	a)	Explain the o	concep	t of the	ermal r	unaw	av.								7N
	b)	Derive an ex	•				•	ntial Div	/ider	bia	S.				7N
	- /					·	JNIT-								
3.	a)	Draw the circ	cuit syr	nbol. E	Explain	<u> </u>			of JI	ET	with	neat	circuit.		7N
	b)	Deduce the		•		ong -	Trans	conduc	ctano	ce,	Drai	n Re	sistanc	e and	7N
		'					OR								
4.		Differentiate	betwee	n Depl	etion M	//OSF			ancei	men	t MO	SFET	with dia	agrams	14N
				·			INIT-							J	
5.	a)	What is an a amplifier circ	•	r? Exp	olain ho	ow a v	weak	signal	can	be a	ampli	fied w	vith a po	ractical	7N
	b)	What do you	unders	tand b	y DC a	nd AC	C equ	ivalent	circu	its c	f an	amplif	ier, exp	lain.	7N
							OR								
6.	a)	Derive expre			•	•		ent ga	in, Ir	nput	imp	edano	e and	Output	10M
	b)	Classify the	amplifie	ers and	d expla	ain in	brief.								4N
						U	NIT-	IV							
7.	a)	Draw the circ	cuit dia	gram o	of a sm	nall si	gnal ı	model (of FE	ET a	mplif	ier an	d expla	in.	7N
	b)	With necess	ary dia	gram,	derive	expre	essio	ns for Z	Z_i, Z_i	o an	d A _{v.}				7N
							OR								
8.	a)	With a neat c	ircuit di	agram	s expla	ain the	e ope	ation o	f Cor	nmo	on Sc	urce I	ET am	plifier.	7N
	b)	Compare Co	mmon	Sourc	e and	Comi	mon l	Drain F	ET a	amp	lifiers	S.			7N
						U	JNIT-	V							
9.		With necess Also give its	-	-	expla	in the	e tunr	neling p	ohen	ome	enon	of a	Tunnel	Diode.	14N
							OR								
10.	a)	Draw the s	-	and	constr	uctior	n of	SCR	and	exp	olain	its c	peratio	n with	6M

b) Write short notes oni) UJT ii) LED

8M

Hall	LICK	et Number :													
Code			,	-								1		-17	
I B.Te	ech.	. II Semester	r Regu		-	-		-			natio	ons M	ay/Jur	ne 201	19
				Engi		•		nem E & E	-						
		arks: 70 er all five unit:	s by ch	,							ınit (5 x 14		3 Hou irks)	irs
			,	`	,		***** UNI		7		,			,	
1.	a)	Explain chlori	nation c	f wate	r and	d brea			_ llorin	ation					7M
	b)	Calculate the 46.5 mg/L of mg/L of CaCl ₂	Ca(HC			-	-					-		-	7M
		J	-				OR	1							
2.	a)	Describe Win	kler's m	ethod	to de	term	ine di	issolv	ed o	xyge	n in v	water.			7M
	b)	What are ion	exchan	ge resi	ins? I	How	can tl		sins I	be re	char	ged?			7M
3.	a)	For the cell (a when the acconstant. Also	tivities predic	are 1	.5M easibi	for a	vrite tall the	the co	ic s	oecie	s, Δ	.G⁰ an			
		$E_{(Al^{3+},Al)}^{0} = -1.6$	66V and	$E_{(Sn^4)}^0$	+, Sn ²⁺)	= 0.1	5V								7M
	b)	Explain Sacri Write their ap			and I	Impre			ent	catho	odic	protect	ion in de	etail.	7M
4.	a)	Describe the	constru	rtion a	nd ch	nemic	OR al re	=	ns inv	volve	d in I	ithium	ion hatte	rv	7M
	b)	Explain oxidat												•	7M
	~,					_	UNIT		7			9 -			
5.	a)	Describe the	prepara	tion, p	roper				_ eering	g app	licat	ions of	Bakelite.		7M
	b)	Write a note of	on therm	oplas	tics a	nd th	ermo		ng pla	astics	s with	n exam	ples.		7M
6.	a)	What are silic					aracte	=	s an	d use	es of	silicor	es. Des	cribe	71.4
		the synthesis								,					7M
	b)	Write a brief r	note on	vulcar	nizatio	_	ia coi UNIT		indin]	g of r	ubbe	er.			7M
7.	a)	A gaseous fu $5\%O_2$ & $5\%N$ $1m^3$ of the fue	l₂. Calcı	•											8M
	b)	Describe the		of ref	ining	of cr	ude d	oil an	d me	ntion	the	major	oroducts	with	Olvi
		their carbon c	hain len	gth.			0.5								6M
8.		What is HCV	and I C	\/ of a	امراء ا	2 lu	OR tify t		alatio	n hat	WAAI	n them	Discuss	s the	
0.		Bomb Calorin				termi	ne th	e CV			wcci	i uiciii	. Diocuse	, tilo	14M
9.	a)	Discuss the		g pro	pertie		unit refr		_ ies:	poro	sity,	therma	al spallin	ıg &	7M
	b)	What do mea	n by vis	•				line p	oint	of a	lubri	cant? I	How visc	osity	
		index of a lub	ncant Ca	an be	ueter	шпе	a? OR	!							7M
10.	a)	What is Portla					the n	nanut		re of	Port	land co	ement by	dry dry	8M
	b)	Mention the lubrication me	function	ns of	•			•		out h	ydrod	dynami	c & thin	ı-film	6M

Hall Tie	Lot Niveshour	
Code: 70	ket Number : R-17	
	n. II Semester Regular & Supplementary Examinations May/June 20	019
	Engineering Mathematics-II	
	(Common to All Branches)	
	arks: 70 Time: 3 Hover all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	ours
7 (113)	*******	
4	UNIT-I	
1.	Trace the curve- Folium of Descartes: $x^3 + y^3 = 3axy$.	14M
	OR	
2.	Evaluate $\int_0^1 \int_x^{\sqrt{x}} xy \ dxdy$ by changing the order of integration.	7M
	UNIT-II	
2 0	Find the Laplace transform of e^{3t} $t^{\frac{7}{2}}$	
		6M
b)	Find the Laplace transform of $\int_0^t \frac{\sin u}{u} du$.	8M
	OR	
4.	Find the Laplace transform of the Half wave rectifier	
	$\left(Sin \ \omega t, \ \ 0 < t < \frac{\pi}{-} \right)$	
	$f(t) = \begin{cases} Sin \omega t, & 0 < t < \frac{\pi}{\omega} \\ 0, & \frac{\pi}{\omega} < t < \frac{\pi}{2\omega} \end{cases}$	
	$\left(\begin{array}{cc} 0, \ \overline{\omega} < t < \overline{2\omega} \end{array}\right)$	14M
	UNIT-III	
5.	Use convolution theorem to evaluate $L^{-1}\left[\frac{s}{(s^2+1)^2}\right]$.	14M
	OR	14111
6.	Solve the differential equation $y'' + 7y' + 10y = 4e^{-3t}$, $y(0) = 0$, $y'(0) = -1$	
	using Laplace Transforms.	14M
	UNIT-IV	
7. a)	Prove that $\nabla r^n = nr^{n-2}\bar{r}$.	7M
b)	Find the directional derivative of $f = x^2yz + 4xz^2$ at (1,-2,-1) in the direction	
	of $2\bar{\iota} - \bar{\jmath} - 2\bar{k}$.	7M
	OR	
8.	Prove that $\bar{A} = (6xy + z^3)i + (3x^2 - z)j + (3xz^2 - y)k$ is irrotational.	1414
	Find the scalar function $f(x, y, z)$ such that $\overline{A} = \nabla f$.	14M
9.	Verify Gauss divergence theorem for $\bar{f} = (x^3 - yz)i - 2x^2yj + zk$ taken	
0.	over the surface of the cube bounded by the planes $x=y=z=a$. the coordinate	
	planes.	14M
	OR	
10.	Verify Green's theorem for $\oint_C (xy + y^2)dx + x^2dy$, where C is the closed	
	curve of the region bounded by $y = x$ and $y = x^2$.	14M

Hall	Ticket Number :	
Code	: 7G523-A	
I B.Te	ech. II Semester Regular & Supplementary Examinations May/June 20	019
	Geometrical Drawing	
Мах.	(Common to EEE and ECE) Marks: 70 Time: 3 Ho	ours
Α	nswer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	
	UNIT-I	
1.	The foci of an ellipse are 90 mm apart and the minor axis is 65 mm long. Determine	
	the major axis and draw half the ellipse by concentric circles method and the other	
	half by oblong method. Draw the tangent to the ellipse at a point above the major axis.	14N
	OR	
2.	Draw an epi-cycloid of a circle of 40 mm diameter, which rolls on another circle of 120	
	mm diameter for one revolution clockwise. Draw a tangent and a normal to it at a point 90 mm from the centre of the directing circle.	141
	UNIT-II	
3.	A line AB of 65 mm long has its end A, 25 mm above H.P and 20 mm in front of V.P.	
	The end B is 40 mm above H.P and 50 mm in front of V.P. Draw its projections and	4.48
	find its inclination with H.P and V.P.	14N
4	OR	
4.	The top view of a 75 mm long line AB, measures 65 mm; while the length of its front view is 50 mm. Its one end A is in the H.P and 12 mm in front of the V.P. Draw the	
	projections of the line AB and determine its inclination with H.P and V.P.	14N
	UNIT-III	
5.	A square lamina ABCD of 30 mm side rests on one of its corners on the ground. Its	
	plane is inclined at 35° with H.P and diagonal DB inclined at 65° to V.P and parallel to H.P. Draw its projections.	14N
	OR	
6.	A thin semi-circular plate of 70 mm diameter, has its straight edge in H.P and inclined	
	at 45° to V.P; while the surface of the plate is inclined at 30° to H.P. The end A of the	
	diameter AB is nearer to the V.P and is at a distance 25 mm from it. Draw the projections of the plate.	14N
	UNIT-IV	1410
7.	A hexagonal pyramid of side of base 25 mm and axis 60 mm long is resting on an	
	edge of the base on H.P. Draw the projections of the solid, when the axis makes an	
	angle of 45° with H.P and the base of the solid is nearer to the V.P.	14N
_	OR	
8.	Draw the projections of a cylinder of base 30 mm diameter and axis 40 mm long, which lies on H.P on a point of its rim, with its axis inclined at 30° to H.P. The top view	
	of the axis is perpendicular to V.P.	14N

Code: 7G523-A

UNIT-V

9. Draw the orthographic views of the following Fig. 1. All dimensions are in mm.

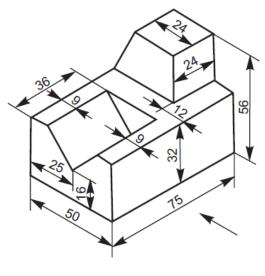


Fig. 1. 14M

OR

10. Three views of an object are shown in Fig. 2. Make an isometric drawing of the object. All dimensions are in mm.

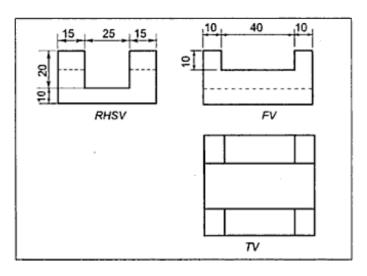


Fig. 2. 14M
