Hall	Ficke	et Number :	
Code	e: 50	G121 R-15	
IB.	Tec	h. II Semester Regular & Supplementary Examinations June 201	7
		C Programming and Data Structures (Common to All Branches)	
		Time: 3 Hou	
Ansv	ver	all five units by choosing one question from each unit (5 x 14 = 70 Mark	S)
		UNIT-I	
1.	a)	How to access a variable through its pointer? Explain with proper example.	7M
	b)	What is Void pointer? Write a 'C' program to demonstrate the use of Void pointer.	7M
		OR	
2.	a)	What is Dynamic Memory Allocation? Explain the functions malloc(), calloc() and free() with syntax and examples.	7M
	b)	Write a 'C' program to implement pointer to pointer concept.	7M
3.	a)	Define Union. Explain its general syntax with one example.	7M
	b)	Write a 'C' program to display the Name, Rollnumber and Grade of 3 students.	
		Create an array of structure objects. Read and display the contents of the array.	7M
4.	a)	OR Write detailed notes on formatted input and output functions of files.	7M
4.	a) b)	Write a 'C' program to implement Binary search technique.	7M
	0)	UNIT-III	7 111
5.	a)	How to represent a stack using Arrays and Linked list? Explain with proper diagrams.	7M
	b)	Write a 'C' program to implement the stack operations using arrays.	7M
		OR	
6.	a)	How to convert an Infix expression into a Postfix expression, explain.	
		Convert the following infix expression into postfix expression	
		(X*Y)/(K*L)+M	7M
	b)	Discuss in detail the various operations possible on a Queue.	7M
7.	a)	UNIT-IV Write short notes on	
7.	a)	i) Static representation of Single Linked List.	
		ii) Dynamic representation of Single Linked List.	7M
	b)	How to insert a node at the beginning, middle and at the end of a single	
	,	linked list? Explain with proper diagrams.	7M
		OR	
8.		Write detailed notes on all operations on a Doubly Linked List.	14M
9.	a)	How to represent a Binary tree using array and linked list? Explain with proper diagrams.	4M
	b)	How to do searching operation on a Binary search tree? Write and explain the algorithm for it.	10M
		OR	
10.		Write detailed notes on the following representation of a graph	
		i) Set representation	
		ii) Linked List representation iii) Matrix representation	14M

Hall	Ticket Number :	
Code	e: 5GC24	
IB.	Tech. II Semester Regular & Supplementary Examinations June 2017	,
	Engineering Mathematics-II	
	(Common to All Branches) . Marks: 70 Time: 3 Hou ver all five units by choosing one question from each unit (5 x 14 = 70 Marks	-
	******** UNIT–I	
1. a)	Change the order of integration in $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} dx dy$ and hence evaluate.	14M
	OR 16	
2. a)	Show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$	7M
b)	evaluate $\int_{0}^{\frac{f}{2}} \int_{0}^{a \sin x} \int_{0}^{(a^2 - r^2)/a} r dz dr d_{y}$	7M
	UNIT-II	
3. a)	Find the Lapace transform of $te^{-t} \sin t dt$	7M
b)	Evaluate $\int_{0}^{\infty} te^{-3t} \sin t dt$	7M
	OR (1)	
4. a)	Using Convolution theorem, find the inverse transform of $L^{-1}\left\{\frac{1}{s(s^2+4)}\right\}$	7M
b)	Find $L^{-1}\left\{\log\frac{s+1}{s-1}\right\}$	714
	UNIT-III	7M
5.	Using transform method solve $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t$ with x = 2 , $\frac{dx}{dt} = -1$ at t=0	4 4 5 4
	OR	14M
6.	Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin t$, $y = \frac{dy}{dt} = 0$ when t=0.	14M
	UNIT-IV	
7. a)	Show that $\nabla^2 r^n = n(n+1)r^{n-2}$	7M
b)	Find the work done in moving a partical in the force field $\overline{F} = 3x^2 \vec{i} + (2xz - y)\vec{j} + z\vec{k}$ along the Straight line from (0,0,0) to (2,1,3) OR	7M
8.	Evaluate the line integral $\int_{c} (x^2 + xy)dx + (x^2 + y^2)dy$ when c is the square formed by	
	the lines $y = \pm 1$ and $x = \pm 1$	14M
	UNIT-V	
9.	Verify Green's theorem for $\int_{c} \left[(xy + y^2) dx + x^2 dy \right]$ where c is bounded by y=x and y=x ²	14M
10		
10.	Verify Stokes Theorem for $\overline{F} = (2x - y)\vec{i} - yz^2\vec{j} - y^2z\vec{k}$ over the upper half surface of	

10. Verify Stokes Theorem for $\overline{F} = (2x - y)\vec{i} - yz^2\vec{j} - y^2z\vec{k}$ over the upper half surface of the sphere $x^2+y^2+z^2 = 1$ bounded by it's projection on the xy- plane. 14M

Hall Ticket Number :						R-15

Code: 5G522

Max. Marks: 70

I B.Tech. II Semester Regular & Supplementary Examinations June 2017

Engineering Graphics-II

(Common to CE & ME)

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT–I

1. A pentagonal pyramid 30 mm side of base and axis 75mm long is resting on one of its base corner on H.P. Draw its projections, when its axis is inclined at 45° to H.P and 30° to V.P.

OR

2. A cone of base 80 mm diameter and height 100 mm is lying with one of its generators on H.P. Draw its projections when the axis appears to be inclined to the reference line at an angle of 40^o in the top view.

UNIT–II

 A cylinder of 50 mm diameter and axis 70 mm long, lies on H.P on one of its generators such that, the axis is inclined at 45^o to V.P. A section plane parallel to V.P passes through the farthest point of the visible base. Draw the projections of the cut solid.

OR

4. A hexagonal pyramid, with edge of base 40 mm and axis 85 mm long, is lying on H.P on one of its triangular faces, with the axis parallel to V.P. A vertical section plane, the H.T of which makes an angle of 45^o with reference line, passes through the center of the base and cuts the pyramid; the apex being retained. Draw the top view, sectional front view and true shape of the section.

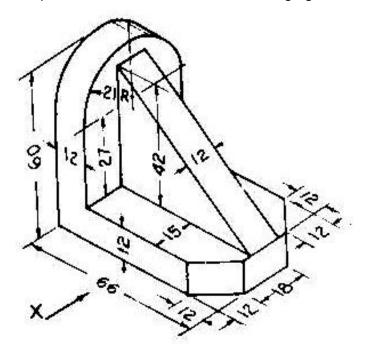
UNIT-III

5. A cube of 50 mm edge is resting on a face on H.P such that, a vertical face is inclined at 30° to V.P. It's cut by a section plane perpendicular to V.P and inclined to H.P at 30° and passing through a point at 12 mm from the top end of the axis. Develop the lateral surface of the lower portion of the cube.

OR

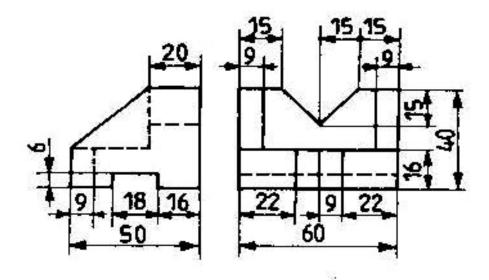
6. A vertical cylinder of 70 mm diameter is penetrated by a horizontal cylinder of the same size. The axis of horizontal cylinder is parallel to both H.P and V.P and is bisecting the axis of the vertical cylinder. Draw the projections showing the lines of intersection.

UNIT-IV


7. Draw the isometric projection of a cylinder of radius 25 mm and axis 50mm resting on its base centrally on the top of a square prism of side 60 mm and height 25 mm. The sides of the square are equally inclined to V.P.

OR

8. The frustum of a hexagonal pyramid side of top and bottom 25 mm and 40 mm respectively, with axis 50 mm height rests on its base in H.P. Its axis is parallel to V.P. Draw its isometric view.


UNIT-V

9. Draw the front view, top view and side view for the following figure.

OR

10. Draw the isometric view of the following figure

Hall 1	Ficke	et Number :	-
Code:	: 5G	C23 R-15	
		n. II Semester Regular & Supplementary Examinations June 2017	
		Engineering Physics	
		(Common to CE, ME, CSE and IT)	
Max.			ſS
Answe	r all	five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT-I	
1.		Discuss about the diffraction at double slit and diffraction grating	14M
		OR	
2.		Describe the Numerical aperture and acceptance angle.	14M
		UNIT–II	
3.	a)	State and derive Bragg's law for diffraction in crystals. How this is useful in	4.01.4
	LA	crystal structure determination?	10M
	b)	Why x-rays are preferred for crystal diffraction than visible light?	4M
		OR	
4.		How ultrasonics are used for non-destructive testing of materials?	14M
5.	a)	UNIT–III Explain the energy and wave function of an electron in potential box	10M
0.	a) b)	Calculate the energy of 4 th state of an electron in a box of width 1nm	4M
	0)	OR	
6.	a)	With suitable picturization of potential well and imposed boundary conditions,	
0.	u)	derive the Schrödinger equation for metallic electron and prove that energy	
		levels are equally spaced	10M
	b)	Calculate the energy and momentum of an x-ray photon whose wavelength is	
		2x10 ⁻¹¹ m	4M
7		UNIT-IV Explain hysteresis process in terms of domain structure of ferromagnetic materials.	014
7.	a) b)		8M
	b)	Explain the significance of hysteresis loop and importance of hysteresis in selection of materials for different applications.	6M
		OR	0
8.	a)	Describe different types of magnetic materials in terms of their spin dipole	
-		alignment and its temperature dependence.	10M
	b)	Define magnetic dipole moment. List out various sources of magnetic dipole	
		moment in magnetic materials.	4M
		UNIT-V	
9.	a)	Analyze the two main processes used for synthesis of nanomaterials	6M
	b)	Discuss the synthesis of nanomaterials by ball milling method	8M
		OR	
10.	a)	Write a note on i) Penetration Depth ii) Flux quantization	10M
	b)	Josephson's junction having a voltage of 8.5 μ V across its terminals, and then	4M
		calculate its generating electromagnetic frequency.	4111

	Hall	Ticket Number :											
	ode	: 5GC21								<u> </u>		R-15	
C		Tech. II Semeste	er Reaul	lar & S	qqu	lem	ento	ary l	Exar	mina	ation	s June 2017	
				Tech				-					
			(C	commo			-)				
Ι		. Marks: 70 Inswer all five units	by choos	ing one	e que *****		from	n ead	ch ur	nit (5	5x14	Time: 3 Hours = 70 Marks)	
				l	JNIT-	-1							
1.	a)	What are the proble	ems unsolve	ed by tec	hnolo	gy as	ident	ified l	by E.	F. So	chuma	cher in his essay?	7M
	b)	Define 'social time	e' as used	by E. F.	. Sch	umad	cher.	State	e its s	signif	icanc	e.	7M
					C	DR							
2	a)	Mention and desc	ribe factor	s that c	ause	clima	atic c	hang	e ov	er lor	ng pei	riods of time.	7M
	b)	Do as directed.											
		i. The plan was		•			-	-		_			
		ii. Expand the f	•	•					•		,	Car battery	
		iii. But for his qu			ed. [F	-ill in	the b	olank	with	appr	opria	te tense form of	
		the verb give iv. Inprobl		-		tort v	with t	ha ni	obla	m vo	usha	re [] lee articles]	
		v. Correct the f		-	-			-			aluvat		
		vi. Choose the	•							,		-	
		The man <u>col</u>	l lapsed ur	nder the	sun.								
		a. stood up		•	c. go			d. rev			e. sur		
		vii. Fill in the bla following ser	0	the appr	opria	te fo	rm of	the	verb	(geru	und o	r infinitive) in the	
		Your English	n seems -		(impr	ove)	a lot.						7M
-					NIT-	1							
3.	a)	What are the long		• ·	•		•					C C	7M
	b)	What is the relation	onship betv	ween hu	Iman		elopm	nent a	and c	clima	te cha	ange?	7M
						OR							
4.	a)	Analyze the clima	te change	with res	spect	to te	mpei	rature	Э.				7M
	b)	Read the following	g advertise	ement a WANT			-					er.	
		A well-established Our requirements	s (a) Univ	versity o	degre	e [B	.E./B	.Tec	h] (b) Inc	dustry	experience (c)	
		Good com		•		ase a	apply	with	full c	aree	r deta	ils to the Human	7M
		NESOURCES Mariag	у с і, г.О. Е		NIT–								7 111
5.	a)	What are the adva	anced and				echno	oloaie	es av	ailab	le in S	Spain?	7M
	b)	Define photovoltai		•	•			•					7M
	- /	· ·		, s.		OR							
6.	a)	Explain the princip	oles of tow	er techr	noloa								7M
5.	b)	As the Personnel			•	•	firm	draf	t an	e-ma	ail to	be sent to those	• •
	~)	candidates who w	•										7M

		UNIT-IV		
7.	a)	State the importance and uses of water.	-	7M
	b)	Why does Sir C.V. Raman call water as "elix	ir"? Explain the reasons.	7M
		OR	2	
8.	a)	Explain how soil erosion affects agriculture a	ind irrigation.	7M
	b)	Write a technical report on computer animati	on.	7M
		UNIT–V]	
9.	a)	Why does Swami Vivekananda consider igno	orance as mother of all evils?	7M
	b)	What are the central ideas of Gita? Explain.		7M
		OR	1	
10.	a)	Describe the salience of the meeting betwee	n Kalam and Wernher Von Braun.	10M
	b)	Vocabulary Test: Match the words in column	A with their meaning in column B.	
		A	В	
		(a) carcass	(1) spreading by contact	
		(b) contagion	(2) dead body of an animal	
		(c) banish	(3) in a friendly manner	
		(d) amicable	(4) send away forcefully	
				4M

Hall Ticket Number :					
Code: 5G521					R-15
I B.Tech. II Semes	er Regular & S	Supplemei	ntary Exc	aminatio	ns June 2017
	Engg Mec	hanics -D	ynamics	5	
	(Comm	non to CE &	(ME)		T 0.11
Max. Marks: 70 Answer all five units t	w choosing one	a upstion fi	rom each	unit (5 v	Time: 3 Hours
	y choosing one	********	oneuci		14 - 70 Marks)
	10	NIT-I	C.		
A parti _{cl} e moves on a					
$S = \frac{e^{4}}{3} n_{h}$ and its velocit	y V=16 m/s. Deter	rmine displac	ement, ver	ocity and a	cceleration of the
particle when t=3s.					
		OR			
A train is travelling fro	•		•		
5 min to cover a dista		-			
length. On reaching th C, at D. Find,	e station C, the br	akes are app	lied and the	e train stop	s 2250 m beyond
(i) The retardation or	CD				
(ii) The time it takes to					
(iii) The average spee	d for the whole di	stance			
	UN	NIT-II			
A flywheel is rotating	at 200 rpm and	after 10 sec	conds it is	rotating a	t 160 rpm. If the
retardation is uniform				•	neel and the time
taken by the flywheel	pefore it comes to		e speed of	200 rpm.	
		OR			
	ocity of a rotating				

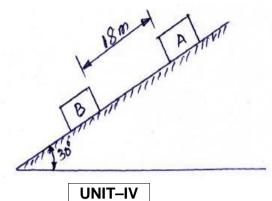
(ii) Angular displacement when t = 5 seconds

2.

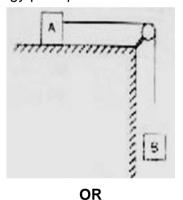
4.

Consider the angular displacement in radiation and time in second.

- UNIT-III
- Determine the tensions in the strings and accelerations of blocks A and B weighing 200 N 5. and 70 N connected by a string and a frictionless and weightless pulley as shown in figure.


ищининищини

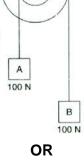
70 N


14M

14M

6. Two blocks A and B released from rest on a 30° inclined plate when they are in 18m apart. The co-efficient of friction under the upper block A is 0.2 and lower block is 0.4. In what time, block A reaches block B? After they touch and move as a single unit, what will be the contact force between them? Weights of block A and B are 100 N and 80N respectively.

7. Two blocks A and B of masses $m_A = 280$ kg and $m_B = 420$ kg are joined by an inextensible cable as shown in figure. Assume that pulley is frictionless and $\mu = 0.3$ between block A and the surface. If the system is initially at rest, determine the velocity of the blocks after it has moved 3.5 m. Use work energy principle.



8. A car of weight 9810 N accelerates from rest to a speed of 45 km/hr in a distance of 50 m against a resistance of 100 N. Find the average driving force acting on the car. Using the average force, find the greatest power developed by engine.

UNIT-V

- 9. Two weights each of 100 N are suspended from a compound pulley as shown in figure. Determine
 - (i) Angular acceleration of pulley
 - (ii) Linear acceleration of the blocks A and B
 - (iii) Tension of the string.

Take weight of the pulley as 300 N and its radius of gyration 0.25 m

0.2 1

10. A homogeneous cylinder of weight 500 N and radius 150 mm is pulled by a horizontal force 200 N through its mass center. Assuming that the cylinder rolls without slipping, determine the angular acceleration of the cylinder. Take the co-efficient of friction of the contact surface as 0.25. Also calculate the distance moved by the cylinder in 2 seconds.

14M

14M

14M

14M