Hall	Tick	et Number :	1						
Code	• 70	R-17							
Coue	. /6	I B.Tech. II Semester Regular Examinations May 2018							
		Data Structures							
		(Common to All Branches)							
		arks: 70 ver all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********* UNIT-I	Jrs						
1.	a)	Define pointer and explain about pointer arithmetic.	7M						
	b) List the four dynamic memory allocation functions in C and give their syntax								
		with examples.	7M						
		OR							
2.	a)	What are the features and uses of pointers?	7M						
	b)	Write a C program to add two numbers using command line arguments.	7M						
3.	a)	UNIT–II Differentiate between structure and union.	6M						
0.	⊆, b)	Give the tracing of quick sort algorithm for the data [1, 2, 3, 4, 5, 6, 7, 8] to be	0						
	- /	sorted in ascending order. Discuss its time complexity.	8M						
		OR							
4.	a)	Write a program in C to copy the contents of one file to another.	7M						
	b)	Write an iterative algorithm for binary search and discuss its time complexity.	7M						
5.	a)	Convert the following infix expressions to postfix expressions.							
		i) A + B * C + D ii) (A + B) * (C + D) iii) A + B + C + D	6M						
	b)	Write a program in C to implement operations on queue.(Use pointers)	8M						
•	、	OR							
6.	a)	Write an algorithm to evaluate a postfix expression.	8M						
	b)	Give the advantages and disadvantages of recursion.	6M						
7.	a)	Write a C program for insertion operation in a singly linked list.	7M						
	b)	Write C functions for insertion and deletion operations in doubly linked list.	7M						
		OR							
8.	a)	Write a recursive program to reverse the given singly linked list.	8M						
	b)	Give the applications of circular linked list.	6M						
9.	a)	Define binary search tree. Write a C function to insert a new node in a binary search tree.	8M						
	b)	Give the applications of graphs.	6M						
	,	OR							
10.	a)	Write a C function to search a given key in a given binary search tree.	8M						
	b)	Define the following regarding graphs.							
		i) Undirected graph ii) In degree iii) Digraph ***	6M						

Hall Ticket Number :						
						R-17

Code: 7G521-B

I B.Tech. II Semester Regular Examinations May 2018

Engineering Graphics-II

(Mechanical Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

1. Draw the projections of a cone, with a 50 mm base diameter and a 70 mm long axis that is resting on a point of its base circle on the ground such that its axis is inclined at 30° to the H.P. and the top view of the axis is inclined at 45° to the V.P.

OR

2. A hexagonal prism, base 40 mm side and height 40 mm has a hole of 40 mm diameter drilled centrally through its ends. Draw its projections when it is resting on one of its corners on the ground with its axis inclined at 60[°] to the ground and two of its faces parallel to the V.P.

UNIT–II

3. A cube of side 40 mm is resting on ground on one of its faces. All the vertical faces of the cube are equally inclined to VP. It is cut by a section plane perpendicular to VP and inclined to HP, so that the true shape of the section is a regular hexagon. Draw the projections, sectional top view and true shape of the section.

OR

4. A pentagonal pyramid with a 55 mm base and a 90 mm slant height, has its base on the HP with a side of base perpendicular to the VP. It is cut by a section plane whose VT is inclined at 60° to XY and intersecting the axis at 40 mm from its base. Draw the Front View, Sectional Top View, Sectional Side View, and the true shape of the section.

UNIT–III

5. A vertical cylinder of 60 mm diameter is penetrated by a horizontal cylinder of the diameter 40mm. The axis of horizontal cylinder is parallel to both H.P and V.P and is bisecting the axis of the vertical cylinder. Draw the projections showing the lines of intersection

OR

6. Draw the development of the lateral surface of the part P of the hexagonal pyramid, two sides of the base parallel to the V.P as shown in figure. All dimensions are in cm.

UNIT-IV

7. Draw the isometric view of a square prism with the side of the base 40mm and length of the axis 70mm. when its axis is ii) horizontal.

i) vertical

OR

8. Draw the isometric projection of a pentagonal pyramid, with side of base 25mm and axis 60mm long. The pyramid is resting on its base on HP, with an edge of the base parallel to the VP.

UNIT-V

- 9. Draw the following views of the object given in figure. All dimensions are in mm. (a) Front View
 - (b) Top View and
 - (c) Side View from the right.

10. Draw the isometric view of the object whose orthographic projections are shown in figure. All dimensions are in mm.

Hall Ticket Number :													
----------------------	--	--	--	--	--	--	--	--	--	--	--	--	--

Code: 7G522

I B.Tech. II Semester Regular Examinations May 2018

Engineering Mechanics - Dynamics

(Common to CE & ME)

Max. Marks: 70

Time: 3 Hours

R-17

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

- UNIT–I
- 1. a) Derive the equations of rectilinear motion of a particle moving with constant acceleration.
 - b) A stone is dropped into a well and falls vertically with constant acceleration $g=9.81 \text{ m} / \text{s}^2$. The sound of impact of the stone is on the bottom of the well is heard 6.5 sec after it is dropped. If the velocity of sound is 336.33 m / s, how deep is the well ?

7M 4M

7M

OR

- 2. a) Define normal and tangential components of accelerations. Write the equations.
 - b) The pilot of an airplane A flying horizontally with constant speed v = 450 kmph at an elevation h = 600 m above a level plain wishes to bomb a target B on the ground (Figure.1). At what angle below the horizontal should he see the target at the instant of releasing the bomb in order to score a hit?

Figure.1

10M

7M

- 3. a) Explain about kinematics of rotation of a rigid body.
 - b) The armature of an electric motor has angular speed N = 1800 rpm at the instant when the power is cut off. If it comes to rest in 6 seconds,

UNIT-II

- (i) Calculate the angular deceleration assuming that it is constant.
- (ii) How many complete revolutions does the armature make during this period? 7M

OR

- a) What is instantaneous center of rotation of a rigid body making plane motion?
 Explain with an example.
 7M
 - b) A locomotive runs along a straight level track with constant acceleration a=0.2g.
 Find the total acceleration of a point at the top of the rim of a driver wheel of radius r = 1 m when the speed of the locomotive is 25 kmph.
 7M

UNIT–III

- 5. a) Explain Virtual work principle and D'Alembert's principle with an example.
 - b) A police investigation of tire marks shows that a car travelling along a straight level street had skidded for a total distance of 40 m after the brakes were applied. The coefficient of friction between tires and pavement is estimated to be $\mu = 0.6$. What was the probable speed of the car when the brakes were applied? Assume constant deceleration for the car.

OR

 a) Two weights P and Q are connected by the arrangement shown in Figure.2. Neglecting friction and the inertia of the pulleys and cord, find the acceleration 'a' of the weight Q. Also find the tension in the cord. Assume that P = 40 KN and Q=30 KN.

b) A

b)

7. a)

8. a)

9. a)

b) A

b) A

Figure.2	7M
A locomotive of weight W = 600 KN goes around a curve of radius r=300m at a	
uniform speed of 70kmph. Determine the total lateral (outward) thrust on the rails.	7M
UNIT–IV	
State and prove Work-Energy principle of rectilinear translation.	7M
When a ball of weight 'W' rests on a spring of constant 'k', it produces a static	
deflection of 25 mm. How much will the same ball compress the spring if it is	
dropped from a height $h = 300 \text{ mm}$? Neglect the mass of the spring.	7M
OR	
State and prove Impulse – Momentum principle	7M
A locomotive weighing 60 tons has a velocity of 15 kmph and backs into a freight	
car weighing 10 tons that is at rest on a level train track. After the coupling is	
made, with what velocity 'v' will the entire system continue to move?	7M
UNIT–V	
Derive the equation of motion of a rigid body rotating about a fixed axis.	7M
A homogeneous sphere, of radius $a = 0.25$ m and weight $W = 1$ KN, can rotate	
freely about a diameter. If it starts from rest and gains, with constant angular	
acceleration, an angular speed of $n = 180$ rpm in 12 revolutions, find the acting	
moment 'M'.	7M
OR	
A constant force of 100N is applied tangentially on a cylinder at rest, whose	

 A constant force of 100N is applied tangentially on a cylinder at rest, whose mass is 50kg and radius is 10cm, for a distance of 5m. Determine the angular velocity of its centre of mass. Assume that there is no slip.

7M

7M

Hall 7	Ficke	et Number :													R-17	
Code	: 7G	C24	1							_]	1			L		
I B.Tech. II Semester Regular Examinations May 2018 Engineering Mathematics-II																
				-			-			nche						
		ırks: 70 er all five uni	ts by	cho	osing	g on	e qu	estio	n fro	m ec	ach u	unit (5 x 14		e: 3 Hou Aarks)	irs
						-		*****								
1.	a)	Trace the cu	irve	$y^{2}(2$	a-x) = x	c ³			I						7M
	b) Evaluate $\iint r \sin_n dr d_n$ over the cardioid $r = a (1 - \cos_n)$ above the initial															
		line.														7M
						а	$\sqrt{a^2}$	\overline{OF}	2							
2.	a)	Evaluate the	e dou	ble ii	ntegr	ral ∫	\int_{0}	$(x^{2} -$	$+y^{2}$))dxdy	by	chan	ging in	to pola	ar	
		coordinates														7M
	b)	Find the volu			ded	by th	e cy	linde	$\mathbf{r} x^2$	$+y^2$	= 4	and	the pla	ines		
		y + z = 4 and	a z, =	= 0												7M
									T–II							
3.	a)	Find the Lap	blace	tran	sforn	n of a	e ^{4t} sii	n 2t	$\cos t$							7M
	b)	Evaluate \int_{0}^{∞}	$t e^{-3t}$	sin t	dt	appl	ying	Lapl	ace t	transf	form.					714
		0						OF								7M
4.	a)	Find the Lap	lace	tran	sforn	n of	sin 3	$t \cos \frac{1}{2}$	<u>t</u>							714
		Evaluate L						ı		uncti	on of	perie	od 2	given l	ov	7M
	,	$f(t) = \begin{cases} \sin t \\ 0 \end{cases}$	-		_	-		•				•		0	,	
		$\int (l) = \int 0$, <i>f</i>	< t ·	< 2f											7M
								UNI	T–III							
5.	a)	Find the inve	erse	Lapla	ace t	ransf	orm			2						
		Applying La						5	-	515		ation				7M
	0)	$\frac{d^3y}{dt^3} + 2\frac{d^2y}{dt^2}$														
		$\frac{dt^3}{dt^3} + 2\frac{dt^2}{dt^2}$	dt	2	y = 0	, y(0) =			= y ((0) =	2				7M
0	-)							OF		\$						
6.	a)	Find the inve	erse	Lapla	ace t	ransf	orm	of $\frac{1}{s^2}$	$\frac{1}{2} + 4$	s + 5						7M
	b)	Applying La									l equ	ation				
		$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + $	- 5 <i>x</i> =	e^{-t}	sin <i>t</i> ,	<i>x</i> (0) = 0	, <i>x</i> ′	(0) =	-1						7M

UNIT-IV
7. a) Find the directional derivative of the function
$$f = x^2 - y^2 + 2z^2$$
 at the point $P = (1, 2, 3)$ in the direction of PQ where $Q = (5, 0, 4)$ 7M
b) Show that $F = (e^x \cos y + yz)i + (xz - e^x \sin y)j + (xy + z)k$ is conservative over its natural domain and find potential function for it. 7M
OR
8. a) Establish the relation $\nabla^2 [f(r)] = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$ where $r = |\bar{r}|$ 7M
b) Evaluate $\int_s \bar{F} \cdot \bar{n} \, dS$ where $\bar{F} = 18z\bar{i} - 12\bar{j} + 3y\bar{k}$ and S is the part of the surface of the plane $2x + 3y + 6z = 12$ located in the first octant. 7M
9. a) Applying divergence theorem evaluate $\iint_s x dy dz + y dz dx + z dx dy$ where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ 7M
b) Evaluate by Greens theorem $\oint_C (y - \sin x) dx + \cos x \, dy$ where C is the triangle enclosed by the lines $y = 0$, $x = \frac{f}{2}$ and $f y = 2x$ 7M

10. Verify stokes theorem for the vector field $\overline{F} = (2x - y)\overline{i} - yz^2\overline{j} - y^2z\overline{k}$ over the upper half of the surface $x^2 + y^2 + z^2 = 1$ bounded by its projection on the xy – plane. 14M

Hall	Tick	et Number :												R-17	
Code	e: 7 G	C23	1	1	1		1	1	1	J	1	J	1		
		IB.Tech	n. II S	Sem			-				itior	ns M	ay 20	18	
				1		-		ng F	-	Sics & CS					
Мах	. Mc	arks: 70		l	CON	IIIIO	1110	CL,			, ,			Time: 3 Ho	ours
A	\nsw	er all five uni	ts by	chc	osing	g on	•	estio *****	n fro	m ec	αchι	unit (5 x 14	= 70 Marks)	
									IT–I						
1.															
	and minima due to interference of reflected light in Thin films. b) In a Newton's Rings experiment diameter of 10 th ring changes from1.4cm to									rom1 for to	10M				
	b)			•	•						-		•	culate R.I. of	
		liquid.		•											4M
2.	2)	Evolain tha f		vina				OF	R						
۷.	a)	Explain the f		•	ersio	n ii	i) Pu	mpin	a me	char	nism	iii) A	Active s	svstem	6M
	b)	Explain the						•	•	, or loan		, ,		, jotom	8M
	,			U					T–II						
3.	a)	•	you understand by space lattice? Describe briefly the seven crystal												4014
	b)	systems and					ofno	rollo	l nlor		hich	mak	oo into	raanta in tha	10M
	b)	Find the mill ratio 3a:4b					•		•					b, c, being	
		primitive vec								•			, ,	, , ,	4M
4		Define ultree			o o rib r			OF	-	لمما م	4	al a.t.:	on of u		014
4.	a) b)	Define ultras Give an acc				•					•				8M 6M
	5)		ount		0 1110	liiou			T–III			or an			OW
5.	a)	Derive Schro	oding	ger's	time	inde	penc	lent	wave	equ	ation	•			8M
	b)	Explain the	signif	ican	ce of	wav	e fur								6M
6.	a)	Explain the	conce	ept c	of Kro	nia F	Penn	OF v mo							7M
	b)	-		•		-		-		uctiv	ity of	met	als on	the basis of	7101
		free electror	theo	ory.						1					7M
7.	a)	What are the	diff، د	ueior	n and	drift			VI–T and	doriv	/A				7M
7.	a) b)	What is Hal										effici	ent for	an extrinsic	7 101
	2)	semiconduc			e o tai	in an	onp					00			7M
-								OF							
8.	a) b)	Discuss gen Explain DC		• •			•		ducto	ors.					8M 6M
	D)			40 J	usep	1501			T–V						OIVI
9.	a)	Give the clas	ssific	atior	n of N	lagn	etic r			and e	expla	in th	eir prop	perties.	8M
	b)	Explain mag	•			•		•	tic fl	ux in	tensi	ty H	and m	agnetization	<u> </u>
		M. How are	they	relat	ed to	eac	h oth	ner? OF)						6M
10.	a)	Explain the B	asic p	orinci	ples r	espo	nsibl			ual pr	opert	ies of	⁻ Nano r	naterials.	6M
	b)	Explain Sol-	-		-	-				-	-				8M
							*	**							