Hall	Tick	et Number :									7
Code	: 7G	C23								R-17	
		Semester Regu	ılar and S	upple	ment	ary Ex	kami	inations	s Mar	y/June 2019)
			_		ng Phy		·				
May	110	ırks: 70	(Commo	on to C	E, ME	and (CSE)		Т	ime: 3 Hours	
		er all five units by	choosing c	ne que	estion fr	om e	ach u	unit (5 x			

1.	a)	Explain the proce emission. Obtain conditions in terms	an express	ed abs	energy	dens					
	b)	In a Newton's ring and that of the 5tl	•					•			
		find the wave leng	•								6M
					OR						
2.	a)	Explain the constru	uction and v	vorking	of semi	conduc	ctor la	aser			7M
	b)	Describe the prin	•	nich op	tical fib	er wor	ks a	nd obtair	n an e	expression for	
		numerical aperture) .	11811	T 11						7M
3.	a)	What are Miller Ir	ndices? Oht	L	T-II	ion fo	r inte	r nlanar	snacir	na in terms of	
0.	u)	Miller indices	idiooo . Obt	ani an	σχρισσο	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		plana	opaon	ig iii toiiiio oi	8M
	b)	Describe in detail	how a flaw	in solid	materia	al is de	etecte	ed by non	destr	uctive method	
	,	using ultrasonics.						•			6M
					OR						
4.	a)	Define Packing fac		-	•						8M
	b)	Draw the following	planes in a		unit cell T–III	(0 1 1)	, (1 0	2) and (1	1 3 2)		6M
5.	a)	State Heisenberg	· ·	y princi	iple. Ba			e princip	le, pr	ove that free	
		electrons cannot e									7M
	b)	Mention the assured electron theory de	•					•			7M
					OR						
6.	a)	Assuming the tin discuss the solution Hence obtain the r	on of a part	icle in d	one dim	-		•			
	b)	Find the temperat				proba	hility	that a st	tate w	vith an energy	
	υ,	0.5eV above Ferm		occupie		p. 000				iai aii oiloigy	4M
7.	a)	What is Hall effect	? Obtain an			the Ha	all coe	efficients.			8M
	b)	Discuss Magnetic	vehicles and	d SQUII	DS. OR						6M
8.	a)	What is Meissner	effect? Disc	uss type		ype II :	super	rconducto	or with	examples.	7M
	b)	Discuss how Coo	•	re forme	ed? Wh	at is t	he im	nportance	of C	ooper pairs in	
		superconductivity?	•	1 1411	T \/						7M
9.	a)	What are ferromag	inetic mater		T–V scuss th	ne hvst	teresi	s of a fer	roman	netic material	7M
5.	b)	Explain the synthe				•			_		7 M
	- /	- ,			9		_				

ጥ ጥ ጥ

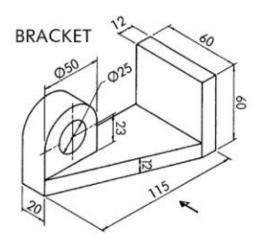
hysteresis curves. Give three examples of each type.

OR
10. a) What are Hard and Soft magnetic materials? Compare them on the basis of

b) What are nano materials? Explain the structure and properties of carbon nonotubes.

8M

6M

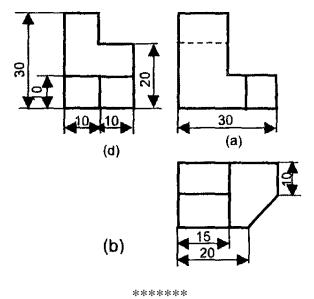

Ha	ll Ti	ket Number :	
Cod	e: 7	G121 R-17	
I B.7	ГесI	n. II Semester Regular & Supplementary Examinations May/June 2	019
		Data Structures	
Ма	v 1/	(Common to All Branches) arks: 70 Time: 3 Ho	n ire
		wer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	JUI 3

4	۵)	What is meant by a pointer? Write a pregram to even the values of two variables	
1.	a)	What is meant by a pointer? Write a program to swap the values of two variables using pointers.	7M
	b)	Write a program to show the usage of pointer to structure.	7M
	D)	OR	, , , ,
2.	a)	Demonstrate the use of &(address of) and *(value at address) operators	7M
۷.	b)	Write a program to show a function returning pointer.	7M
	D)	UNIT-II	<i>1</i> IVI
3.	a)	What is a structure? Explain the syntax of Structure declaration with example	7M
0.	b)	How Selection sort is different from bubble sort?	7M
	۵)	OR	
4.	a)	Define Union. Explain its general syntax with one example.	7M
••	b)	Arrange the following integers in ascending order using Merge sort procedure.	7 101
	D)	39,48,62,18,23,34,58,12.	7M
		UNIT-III	
5.	a)	Explain stack with basic Operations (push and pop).	7M
	b)	Design the procedure to count number of parenthesis in an expression using Stack.	7M
	,	OR	
6.		Compare Linear Queue and Circular Queue. Write a program to insert and delete	
		from a circular queue.	14M
		UNIT-IV	
7.		Implement Insertion, Deletion and search operations at any position in a singly	
		linked list.	14M
		OR	
8.	a)	Write insertion and deletion functions for the doubly linked list.	7M
	b)	Summarize Circular Linked List	7M
		UNIT-V	
9.	a)	Construct a Binary tree T by using the following in order and post order traversals of T.	
		In order: DKIBAEGHJFC	71./
	ل ا	Post Order: K D I E A G B F C J H.	7N
	b)	Explain various methods of representing graphs in memory. OR	7M
10.		What is Binary Search Tree (BST)? How do we do search in BST? Write a	
10.		procedure for insertion and deletion operations on BST.	14M

	U.T. J. of N J											
на	II Ticket Number :										R-1	
	e: 7G521 Tech. II Semester	_	Engi	neer	ing (Graph	ics –	-11	atior	ıs M		
_	x. Marks: 70 Answer <i>all five</i> units	by ch	•		e ques *****	CE and stion fro *** JNIT-I		•	nit (5	x 14 :	Time: 3 = 70 Mark	
1.	Draw the projections on the HP on one of				5mm d	diamete				า long	g, lying	14M
2.	A pentagonal pyranits base corner on land 30° to V.P.				ctions			·		•		14M
3.	A hexagonal prism one of its bases with inclined at 60° to hidistance 12 mm fro shape of section.	n two of	f the v I perp	ertical endicu	m and faces alar to raw its	axis ler perpen VP and	dicular	r to VF sing tl	P. It is hroug	cut b	oy a plane point at a	14M
4.	A cone, diameter of is cut by a section plane passe the true shape of the	olane p es throu	erpen ugh th	diculaı e apex	r to the	e VP an	d incli	ned a	t 75º	to the	HP. The	14M
5.	A hexagonal prism on HP. such that a perpendicular to V.F the top end of an elateral surface of the	rectan P. and i extreme	ngular ncline later	face i d at 30	nm an s para 0º to H	d axis 7 allel to \ P. The	/.P. It section	is cut n plan	by a	sect assin	tion plane g through	14M
					OR							
6.	Draw the development of the lateral surface of the frustum of the square pyramid of side of base 30 mm and axis 40 mm, resting on HP with one of the base edges parallel to V.P. It is cut by a horizontal cutting plane at a height of 20 mm. UNIT-IV								14M			
7.	Draw the isometric vand resting on its ba		•	•	•				e, axi	s 100) mm long	14M
8.	Draw the isometric vof the axis 70mm. w		•	•				he ba zontal		mm a	and length	14M

Code: 7G521

UNIT-V


9. Draw the front view, top view and left side view for the following figure

14M

OR

10. Draw the isometric view for the following figure

14M

Hall Ticket Number :

Code: 7G522

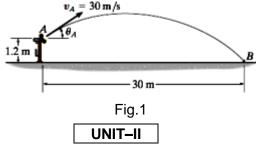
R-17

I B.Tech. II Semester Regular & Supplementary Examinations May/June 2019

Engineering Mechanics - Dynamics

(Common to CE and ME)

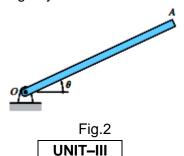
Max. Marks: 70 Time: 3 Hours


Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

1. A particle moves along a horizontal path with a velocity of $v = (3t^2 - 6t)$ mis, where t is the time in seconds. If it is initially located at the origin 0, determine the distance traveled in 3.5 s, and the particle's average velocity and average speed during the time interval.

OR


2. The pitching machine is adjusted so that the baseball is launched with a speed of $v_A = 30$ m/s. If the ball strikes the ground at B (Fig.1), determine the two possible angles θ_A at which it was launched.

- 3. a) Discuss the rigid body translation.
 - b) A boy drops a stone from the top of well vertically downwards into it. The splash is heard by him after 6 seconds. Find the well depth by taking sound velocity as 400 m/s.

OR

- 4. The angular position of the rod OA (Fig.2) varies with time as $\theta = -4t^2+24t-10$, where θ is in radians and t is in seconds. Determine
 - (a) the angular velocity and the angular acceleration of the rod at t = 4 s; and
 - (b) the total angle turned through by the rod between t = 0 and t = 4 s.

5. The 12-kg mass A in Fig. 3 slides with negligible friction in a semicircular trough of radius R = 2 m. The mass is launched at $\theta = 30^{\circ}$ with the velocity $v_0 = 4$ m/s toward the bottom of the trough. Derive the following as functions of θ : (1) the speed of the mass; and (2) the contact force between the mass and the trough.

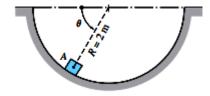


Fig.3

6. A force of F = 15 kg is applied to the cord as shown in Fig.4. Determine how high the 30 kg block A rises in 2 s starting from rest. Neglect the weight of the pulleys and cord.

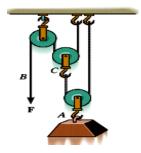


Fig.4

UNIT-IV

7. In Fig.5, if the coefficient of kinetic friction between the 100-kg crate and the plane μ_k =0.25, determine the compression x of the spring required to bring the crate momentarily to rest. Initially the spring is un-stretched and the crate is at rest.

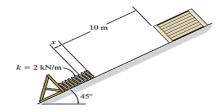


Fig.5

OR

- 8. a) Discuss conservation of momentum
 - b) Explain impact of jet on vane

UNIT-V

9. The 100 kg wheel has a radius of gyration about its center 0 of $k_0 = 500$ mm (Fig.6). If the wheel starts from rest, determine its angular velocity in t = 3 s.

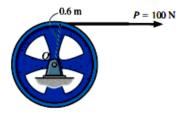


Fig.6

OR

10. Discuss equations of motion for rotational motion of a rigid body.

Hall Tie	Lot Number .	
Code: 70	ket Number : R-17	
	. Il Semester Regular & Supplementary Examinations May/June 20	019
	Engineering Mathematics-II	
	(Common to All Branches)	
Max. M Ansv	arks: 70 ver all five units by choosing one question from each unit (5 x 14 = 70 Marks)	ours
,	******	
4	UNIT-I	
1.	Trace the curve- Folium of Descartes: $x^3 + y^3 = 3axy$.	14M
	OR .	
2.	Evaluate $\int_0^1 \int_x^{\sqrt{x}} xy \ dxdy$ by changing the order of integration.	7M
	UNIT-II	
2 0	Find the Laplace transform of e^{3t} $t^{\frac{7}{2}}$	
		6M
b)	Find the Laplace transform of $\int_0^t \frac{\sin u}{u} du$.	8M
	OR	
4.	Find the Laplace transform of the Half wave rectifier	
	$\left(Sin \ \omega t, \ \ 0 < t < \frac{\pi}{-} \right)$	
	$f(t) = \begin{cases} Sin \omega t, & 0 < t < \frac{\pi}{\omega} \\ 0, & \frac{\pi}{\omega} < t < \frac{\pi}{2\omega} \end{cases}$	
	$\left(\begin{array}{cc} 0, \ \overline{\omega} < t < \overline{2\omega} \end{array}\right)$	14M
	UNIT-III	
5.	Use convolution theorem to evaluate $L^{-1}\left[\frac{s}{(s^2+1)^2}\right]$.	14M
	OR	14101
6.	Solve the differential equation $y'' + 7y' + 10y = 4e^{-3t}$, $y(0) = 0$, $y'(0) = -1$	
	using Laplace Transforms.	14M
	UNIT-IV	
7. a)	Prove that $\nabla r^n = nr^{n-2}\bar{r}$.	7M
b)	Find the directional derivative of $f = x^2yz + 4xz^2$ at (1,-2,-1) in the direction	
	of $2\bar{\iota} - \bar{\jmath} - 2\bar{k}$.	7M
	OR	
8.	Prove that $\bar{A} = (6xy + z^3)i + (3x^2 - z)j + (3xz^2 - y)k$ is irrotational.	1 4 5 4
	Find the scalar function $f(x, y, z)$ such that $\overline{A} = \nabla f$.	14M
9.	Verify Gauss divergence theorem for $\bar{f} = (x^3 - yz)i - 2x^2yj + zk$ taken	
J.	over the surface of the cube bounded by the planes $x=y=z=a$. the coordinate	
	planes.	14M
	OR	
10.	Verify Green's theorem for $\oint_C (xy + y^2)dx + x^2dy$, where C is the closed	
	curve of the region bounded by $y = x$ and $y = x^2$.	14M
