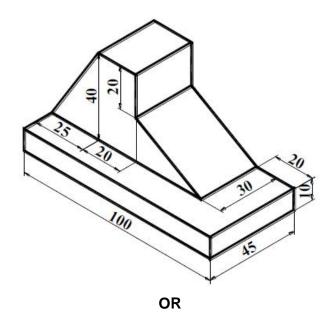
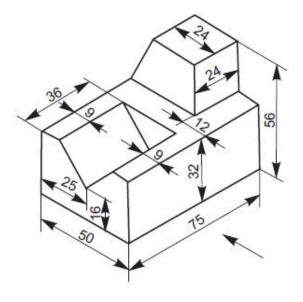

Hall	Ficke	et Number :									
Code: 5G121											
I B.Tech. II Semester Regular & Supplementary Examinations June 2017											
C Programming and Data Structures (Common to All Branches)											
Max. Marks: 70 Time: 3 Hours											
Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)											
		UNIT-I									
1.	a)	How to access a variable through its pointer? Explain with proper example.	7M								
	b)	What is Void pointer? Write a 'C' program to demonstrate the use of Void pointer.	7M								
OR											
2.	a)	What is Dynamic Memory Allocation? Explain the functions malloc(), calloc() and free() with syntax and examples.	7M								
	b)	Write a 'C' program to implement pointer to pointer concept.	7M								
3.	a)	Define Union. Explain its general syntax with one example.	7M								
	b)	Write a 'C' program to display the Name, Rollnumber and Grade of 3 students.									
		Create an array of structure objects. Read and display the contents of the array.	7M								
4.	a)	OR Write detailed notes on formatted input and output functions of files.	7M								
4.	,		7M								
	b) Write a 'C' program to implement Binary search technique. 7M										
5.	a)	How to represent a stack using Arrays and Linked list? Explain with proper diagrams.	7M								
	b)	Write a 'C' program to implement the stack operations using arrays.	7M								
		OR									
6.	a)	How to convert an Infix expression into a Postfix expression, explain.									
		Convert the following infix expression into postfix expression									
		(X*Y)/(K*L)+M	7M								
	b)	Discuss in detail the various operations possible on a Queue.	7M								
7.	a)	UNIT-IV Write short notes on									
7.	a)	i) Static representation of Single Linked List.									
		ii) Dynamic representation of Single Linked List.	7M								
	b)	How to insert a node at the beginning, middle and at the end of a single									
	,	linked list? Explain with proper diagrams.	7M								
		OR									
8.		Write detailed notes on all operations on a Doubly Linked List.	14M								
9.	a)	How to represent a Binary tree using array and linked list? Explain with proper diagrams.	4M								
	b)	How to do searching operation on a Binary search tree? Write and explain the algorithm for it.	10M								
		OR									
10.		Write detailed notes on the following representation of a graph									
		i) Set representation									
		ii) Linked List representation iii) Matrix representation	14M								

Hall	Ticket Number :								
Code	e: 5GC24								
IB.	I B.Tech. II Semester Regular & Supplementary Examinations June 2017								
	Engineering Mathematics-II								
	(Common to All Branches) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)								
	******** UNIT–I								
1. a)	Change the order of integration in $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} dx dy$ and hence evaluate.	14M							
	OR 16								
2. a)	Show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$	7M							
b)	evaluate $\int_{0}^{\frac{f}{2}} \int_{0}^{a \sin x} \int_{0}^{(a^2 - r^2)/a} r dz dr d_{y}$	7M							
	UNIT-II								
3. a)	Find the Lapace transform of $te^{-t} \sin t dt$	7M							
b)	Evaluate $\int_{0}^{\infty} te^{-3t} \sin t dt$	7M							
	OR (1)								
4. a)	Using Convolution theorem, find the inverse transform of $L^{-1}\left\{\frac{1}{s(s^2+4)}\right\}$	7M							
b)	Find $L^{-1}\left\{\log\frac{s+1}{s-1}\right\}$	714							
	UNIT-III	7M							
5.	Using transform method solve $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t$ with x = 2 , $\frac{dx}{dt} = -1$ at t=0	4 4 5 4							
	OR	14M							
6.	Solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin t$, $y = \frac{dy}{dt} = 0$ when t=0.	14M							
	UNIT-IV								
7. a)	Show that $\nabla^2 r^n = n(n+1)r^{n-2}$	7M							
b)	Find the work done in moving a partical in the force field $\overline{F} = 3x^2 \vec{i} + (2xz - y)\vec{j} + z\vec{k}$ along the Straight line from (0,0,0) to (2,1,3) OR	7M							
8.	Evaluate the line integral $\int_{c} (x^2 + xy)dx + (x^2 + y^2)dy$ when c is the square formed by								
	the lines $y = \pm 1$ and $x = \pm 1$	14M							
	UNIT-V								
9.	Verify Green's theorem for $\int_{c} \left[(xy + y^2) dx + x^2 dy \right]$ where c is bounded by y=x and y=x ²	14M							
10									
10.	Verify Stokes Theorem for $\overline{F} = (2x - y)\vec{i} - yz^2\vec{j} - y^2z\vec{k}$ over the upper half surface of								

10. Verify Stokes Theorem for $\overline{F} = (2x - y)\vec{i} - yz^2\vec{j} - y^2z\vec{k}$ over the upper half surface of the sphere $x^2+y^2+z^2 = 1$ bounded by it's projection on the xy- plane. 14M

Hall Ticket Number :]	Г	
Code	: 5G523-D	1						1	J	1	J	1	R-15	
I B.T	I B.Tech. II Semester Regular & Supplementary Examinations June 2017													
Engineering Drawing-II														
Max	(Information Technology) Max. Marks: 70 Time: 3 Hours													
	er all five units	by c	choo	osing	one	e qu	estic	n fro	om e	each	uni			
1.	A circular lami	na o	f dia	mete	r 50				plane	e incl	ined	at 40° to	V.P. and	
	perpendicular	to H.	P. D	raw i	ts fro	nt ar	nd to	o viev	w.					14M
							OR							
2.	A square lamir													
	V.P. All the sid the V.P. Draw			-		s are	equa	any n	nciin	ed to	the	HP and	parallel to	14M
					-	l	JNIT	-11						
3.	A hexagonal p	orism	of b	ase	side	30m	m, a	xis h	eigh	t 50n	nm i	s resting	on HP on	
	one of its base						incli	ned	at 35	5° to	ΗP	and para	llel to VP.	14M
	Draw the proje	CUON	15 01	ine p	01511	•	OR							1411
4.	A pentagonal p	wran	nid c	fhas	e sir	10 30		avis	heia	ht 60	mm	is resting	on HP on	
	one of its bas	•							•			•		
	Draw the proje	ction	ns of	the p	yran									14M
-						1	JNIT-		F()	ام مر م		14h 70 rearea	
5.	Draw the proje when it lies or											-		
	mm from the V		0					•						14M
							OR							
6.	A cylinder of t								-			-		
	one of its gene	rator	rs Wi	in its	axis		ned a JNIT-		' to v	P. D	rawı	ts project	ions.	14M
7.	Draw the Isom	etric	view	∕ of th	ne fol									
								-13		7				
				1		1 व								
						47			┛┤	14				
					8	Ì								
						- <u>+</u>		-52-						
						_	15	-JC-						
						1 -20								
						ţ			Ц	40				
									- 1	Ĩ				


8. Draw the Isometric view of the following figure


14M

14M

9 Draw the orthographic view of the following figure

10. Draw the orthographic view of the following figure

Hall 1	Ficke	et Number :	-									
Code: 5GC23												
	I B.Tech. II Semester Regular & Supplementary Examinations June 2017											
Engineering Physics												
		(Common to CE, ME, CSE and IT)										
Max.			ſS									
Answe	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)											
		UNIT-I										
1. Discuss about the diffraction at double slit and diffraction grating												
OR												
2.		Describe the Numerical aperture and acceptance angle.	14M									
	UNIT–II											
3.	a)	State and derive Bragg's law for diffraction in crystals. How this is useful in	4.01.4									
	LA	crystal structure determination?	10M									
	b)	Why x-rays are preferred for crystal diffraction than visible light?	4M									
		OR										
4.		How ultrasonics are used for non-destructive testing of materials?	14M									
5.	a)	UNIT–III Explain the energy and wave function of an electron in potential box	10M									
0.	a) b)	Calculate the energy of 4 th state of an electron in a box of width 1nm	4M									
	0)	OR										
6.	a)	With suitable picturization of potential well and imposed boundary conditions,										
0.	u)	derive the Schrödinger equation for metallic electron and prove that energy										
		levels are equally spaced	10M									
	b)	Calculate the energy and momentum of an x-ray photon whose wavelength is										
		2x10 ⁻¹¹ m	4M									
7		UNIT-IV Explain hysteresis process in terms of domain structure of ferromagnetic materials.	014									
7.	a) b)		8M									
	b)	Explain the significance of hysteresis loop and importance of hysteresis in selection of materials for different applications.	6M									
		OR	0									
8.	a)	Describe different types of magnetic materials in terms of their spin dipole										
-		alignment and its temperature dependence.	10M									
	b)	Define magnetic dipole moment. List out various sources of magnetic dipole										
		moment in magnetic materials.	4M									
		UNIT-V										
9.	a)	Analyze the two main processes used for synthesis of nanomaterials	6M									
	b)	Discuss the synthesis of nanomaterials by ball milling method	8M									
		OR										
10.	a)	Write a note on i) Penetration Depth ii) Flux quantization	10M									
	b)	Josephson's junction having a voltage of 8.5 μ V across its terminals, and then	4M									
		calculate its generating electromagnetic frequency.	4111									

Hall T	īcke	et Number :													[
Code	Code: 5GC25 R-15															
I B.Tech. II Semester Regular & Supplementary Examinations June 2017 Mathematical Methods –II																
(Common to CSE & IT) Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********																
UNIT-I																
1.	a)	Derive the			•					-		•		bx to	the dat	a
		points (x_i, y_i)	$(y_i), i$	=1,2,	,3,	<i>m</i>	by th	e me	ethod	of I	east	squar	es.			7M
	b)	Fit a straigh	nt line	for t	he fo	llowi	ng da	ata	1		1					
		-	X:	6	7	7		8	8	8	9			10		714
			y:	5	5	2	ł	5 OF	4 7	3	4	i	3	3		7M
2.		Fit a secon	d deg	ree c	curve	to th	ne fol			ita						
				x:		1	2	2	3		4	5)			
				y:		10	1	2	8		10	14	4			14M
						ι	JNIT-	-11								
3.	a)	Find by Tag	ylor's	serie	es m	etho	d the	valu	le of	y a	at x =	= 0.1	anc	x = 0	0.2 to fiv	'e
		places of d	ecima	als fro	$m \frac{a}{a}$	$\frac{ly}{lx} = 1$	x^2y -	-1, y	(0) =	1.						7M
	b)	Using Rung	ge-Ku	itta n	netho	od of	four	th or	der, s	solv	$e \frac{d}{dt}$	$\frac{y}{x} = \frac{y^2}{y^2}$	$\frac{2^{2}-3}{2^{2}+3}$	$\frac{x^2}{x^2}$ with	y(0) =	1
		at $x = 0.2$, ().4													7M
4.		Using Rung	ne-Ku	itta m	netho	nd of	orde	OF r 4. 1		v fc	or $x =$	= 0.1.	0.2	. 0.3.	aiven tha	ət
		$\frac{dy}{dx} = x + y$														
		method.														14M
5.				. .	o 10		NIT-		£	:	f		n h	.,		
5.		Find the Fo						the	funct	ion	J(x)) give	an d	у		
		f(x) = x														
		=2f		5	5		5		c 2							
	Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$ 14M															

6. Obtain Fourier cosine and sine series for f(x) = x in the interval $0 \le x \le f$.

Hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$ 14M

OR

Page **1** of **2**

UNIT–IV

7. a) Find the Fourier transform of

$$f(x) = 1 - x^{2}, \quad |x| \le 1$$

= 0 , $|x| > 1$
Hence evaluate
$$\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^{3}} \cos \frac{x}{2} dx$$
 7M

b) Find the finite Fourier sine and cosine transforms of f(x) defined by f(x) = 1, where 0 < x < f. 7M

OR

8. a) Find the Fourier sine transform of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{f e^{-m}}{2}, m > 0$ 7M

b) Find the finite Fourier sine and cosine transforms of f(x) defined by

$$f(x) = 1 \qquad if \quad 0 < x < \frac{f}{2}$$
$$= -1 \qquad if \quad \frac{f}{2} < x < f$$
$$\boxed{\text{UNIT-V}}$$

- 9. a) Form the partial differential equation by eliminating the arbitrary functions f and g from z = f(x+ct) + g(x-ct) 7M
 - b) Solve by the method of separation of variables $\frac{\partial^2 z}{\partial x^2} 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$ 7M

OR

10. a) Solve
$$(mz - ny)\frac{\partial z}{\partial x} + (nx - lz)\frac{\partial z}{\partial y} = ly - mx$$
 7M

b) Solve
$$x^2 p^2 + y^2 q^2 = z^2$$
 7M

	Hall	Ticket Number :						Hall Ticket Number :								
Code: 5GC21																
I B.Tech. II Semester Regular & Supplementary Examinations June 2017																
			(C	commo			-)							
Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)																
				l	JNIT-	-1										
1.	a)	What are the proble	ems unsolve	ed by tec	hnolo	gy as	ident	ified l	by E.	F. So	chuma	cher in his essay?	7M			
	b)	Define 'social time	e' as used	by E. F.	. Sch	umad	cher.	State	e its s	signif	icanc	e.	7M			
					C	DR										
2	a)	Mention and desc	ribe factor	s that c	ause	clima	atic c	hang	e ov	er lor	ng pei	riods of time.	7M			
	b)	Do as directed.														
		i. The plan was		•			-	-		_						
		ii. Expand the f	•	•					•		,	Car battery				
		iii. But for his qu			ed. [F	-ill in	the b	olank	with	appr	opria	te tense form of				
		the verb give iv. Inprobl		-		tort v	with t	ha ni	obla	m vo	usha	re [] lee articles]				
		v. Correct the fe		-	-			-			aluvat					
		vi. Choose the	•							,		-				
		The man <u>col</u>	l lapsed ur	nder the	sun.											
		a. stood up		•	c. go			d. rev			e. sur					
		vii. Fill in the bla following ser	0	the appr	opria	te fo	rm of	the	verb	(geru	und o	r infinitive) in the				
		Your English	n seems -		(impr	ove)	a lot.						7M			
-					NIT-	1										
3.	a)	What are the long		• ·	•		•					C C	7M			
	b)	What is the relation	onship betv	ween hu	Iman		elopm	nent a	and c	clima	te cha	ange?	7M			
						OR										
4.	a)	Analyze the clima	te change	with res	spect	to te	mpei	rature	Э.				7M			
	b)	Read the following	g advertise	ement a WANT			-					er.				
		A well-established Our requirements	s (a) Univ	versity o	degre	e [B	.E./B	.Tec	h] (b) Inc	dustry	experience (c)				
		Good com		•		ase a	apply	with	full c	aree	r deta	ils to the Human	7M			
		NESOURCES Mariag	у с і, г.О. Е		NIT–								7 111			
5.	a)	What are the adva	anced and				echno	oloaie	es av	ailab	le in S	Spain?	7M			
	b)	Define photovoltai		•	•			•					7M			
	- /	· ·		, s.		OR										
6.	a)	Explain the princip	oles of tow	er techr	noloa								7M			
5.	b)	As the Personnel			•	•	firm	draf	t an	e-ma	ail to	be sent to those	• •			
	~)	candidates who w	•										7M			

		UNIT-IV								
7.	a)	State the importance and uses of water.								
	b)	Why does Sir C.V. Raman call water as "elix	ir"? Explain the reasons.	7M						
		OR	2							
8.	a)	Explain how soil erosion affects agriculture a	ind irrigation.	7M						
	b)	Write a technical report on computer animati	on.	7M						
		UNIT–V]							
9.	a)	Why does Swami Vivekananda consider igno	orance as mother of all evils?	7M						
	b)	What are the central ideas of Gita? Explain.		7M						
		OR	1							
10.	a)	Describe the salience of the meeting betwee	n Kalam and Wernher Von Braun.	10M						
	b)	Vocabulary Test: Match the words in column	A with their meaning in column B.							
		А	В							
		(a) carcass	(1) spreading by contact							
		(b) contagion	(2) dead body of an animal							
		(c) banish	(3) in a friendly manner							
		(d) amicable	(4) send away forcefully							
				4M						
