Н	all T	icket Number :	
Co	de:	4PE522 R-14	
	Μ	.Tech. II Semester Regular & Supplementary Examinations June 2017	
		Robotics	
١.٨	av M	(Machine Design) Marks: 60 Time: 3 Hours	
		er all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks) *********	
		UNIT-I	
1.	a)	Suggest a suitable robot for assisting in gardening. Illustrate the different activities it can perform and suggest the components of the robot as per the activity.	81
	b)	Suggest suitable robotic configuration and components for assembling spare parts of an automobile.	4N
_	- \	OR	
2.	a)	Identify the types of end-effectors suitable for sweeping city roads by a robot? Explain the working principle of garbage collection, end-effector material and design for the purpose.	8M
	b)	Discuss Homogeneous Transformation matrices?	4M
		UNIT-II	
3.	a)	"The forward kinematic model of a manipulator depends on the choice of the home position of the manipulator" Comment on this statement	8N
	b)	Solutions to inverse kinematics problem are generally difficult. Explain why?	4N
		OR	
4.	a)	Describe D-H representation of forward kinematic equations of robots?	4N
	b)	Explain Inverse Kinematic equations for position of 6-DOF manipulator?	8M
		UNIT-III	
5.	•	Explain differential motions of frame-translations?	6M
	b)	Discuss relation between Jacobian and the differential operator?	6M
e	٥)	OR Derive Legrange rehat equations for a 2 DOE manipulator?	01.4
6.	a)	Derive Lagrange robot equations for a 3-DOF manipulator?	6M
	b)	Compute the Jacobian for the SCARA manipulator? UNIT-IV	6M
7.	a)	A single cubic trajectory is given by $(t) = 20 + 25 t^2 + 40 t^3$ and is used over a time interval from $t = 0$ to $t = 2$ seconds. What are the starting and final positions, velocities	
		and accelerations?	6M
	b)	Explain Basic principle of Optical proximity sensor?	6M
		OR	
8.	a)	A rotary joint moves from -15° to +45° in 3seconds. Determine the polynomial for a smooth trajectory, if the initial and final velocity and accelerations are zero.	6M
	b)	While designing a robot for painting purpose explain the technical aspects that need to be considered and list the Sensors to be chosen to complete the required task.	6M
_	ē	UNIT-V	
9.	a)	Discuss Wait, Signal and Delay commands?	6M
	b)	Explain generations of robot programming languages?	6N
0	٥,	OR Describe methods of robot programming?	~ *
0.	a)	Describe methods of robot programming?	6M
	b)	Discuss robot language structure with help of block diagram?	6M

	.(N .										
	ket Number :									R-14	
Code: 4I	PF523 ech. II Semest	er Real	ular 8.	Sunn	lemer	ntary F	- - - - -	inatio	ns li		
741.14	ocii, ii ocii iosi	or Rog		ory of			_XGIII	ii iano	113 30	0110 2017	
Мах. Ма	nulsas (O		(M	achine	e Desig	n) -				Time at 2 Hay	
	Il five units by	choosir	ng one	****	****	om ed	ach u	nit (5	x 12	Time: 3 Hou = 60 Marks	
1.	Derive 3D eq	uilibrium	eguati		I NIT-I Cartesia	n co-c	ordinat	e syste	em.		12N
	20.110 02 04		oquan		OR	00 0					
2.	The state of s $\ddagger_{ij} = \begin{bmatrix} 50 \\ 50 \\ -40 \end{bmatrix}$		• •	Ū	en by t	he follo	owing	stress	tenso	or:	
	_		_								
	i) Calculate ii) Magnitud				ncipal s	tress					12M
				U	NIT-II						
3.	Explain the co	onvexity	and ur	niquene		an elas	stic so	lid			12N
4					OR						01
4. a) b)	Explain elasti Explain the co	•				t tensc	ors				6M 6M
D)	Explain the G	опсерт о	ı piasti	c poter	ıllai						Olv
5.	Explain the P	randtl - F	Reuss		NIT-III al Mode	el.					12N
					OR						
6.	What are isot	ropic an	d kinen	natic h	ardenir	g rules	s? Exp	olain			12N
7.	Explain the st	teps invo	olved in		NIT-IV elemen OR	t mode	el for p	olasticit	зу		12N
8.	Write algorithm		umerica	al imple		ions of	the e	lastic p	lastic	incremental	12M
9.	State and exp	olain low	er boui		NIT–V orem ar	nd upp	er bou	ınd the	orem		12N
10.	Explain the street velocity field.	Statically	/ admi	ssible		field a	and ki	nemat	ically	admissible	12N

Hall Ticket Number :						R-14	_
Code: 4PE521						1/-1-7	_

M.Tech. II Semester Regular & Supplementary Examinations June 2017

Advanced Optimization Techniques

(Machine Design)

Max. Marks: 60 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)

UNIT-I

- a) The following relationships are arrived for calculation revenue and cost values/functions of concern. Find out at what level of output value of x, where x is measured in tons produced per week, Profit (Revenue-Cost) value is maximum.
 - b) Find the maximum of the function $f(\mathbf{X})=2x_1+x_2+10$ subject to $g(\mathbf{X})=x_1+2x_2^2=3$ using the Lagrange multiplier method. Also examine the effect of changing the right-hand side of the constraint on the optimum value of f.

OR

- 2. a) Determine the maximu mir multiplication $f(x) = 12x^5 45x^4 + 40x^3 + 5$ 6M
 - b) Consider the following problem:

Minimize $f(x_1, x_2) = (x_1 - 1)^2 + x_2^2$ subject to

$$g_1(x_1, x_2) = x_1^3 - 2x_2$$
 0

$$g_2(x_1, x_2) = x_1^3 + 2x_2 = 0$$

Determine whether the constraint qualification and the Kuhn-Tucker conditions are satisfied at the optimum point.

UNIT-II

Solve the following LPP using Big-M method.

Minimize $Z=4x_1+2x_2$, Subject to: $3x_1+x_2$ 27 and $-x_1-x_2$ -21 and x_1 , x_2 are 0.

OR

4. Five jobs are to be assigned to five machines using the return matrix provided below. Assign the jobs to machines to maximize total returns.

		Machines								
		Returns in Rs.								
		A B C D E								
	Р	5	11	10	12	4				
	Q	2	4	6	3	5				
	R	3	12	5	14	6				
SC	S	6	14	4	11	7				
Jobs	Т	7	9	8	12	5				

12M

6M

6M

6M

12M

Code: 4PE521

UNIT-III

5. Find minimum point for the following function using the Nelder-Mead algorithm:

$$f(x) = x_2 - 7x_1 - x_1x_2 + x_2 - x_2$$
, Use x=(1,1) as the initial seed point.

12M

OR

- 6. a) State the necessary and sufficient conditions for the unconstrained minimum of a function.
 - ∩1
 - b) Minimize $f(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ starting from the point X1 = [0,0], Solve by steepest descent method.

UNIT-IV

7. a) Explain stages involved in Genetic Algorithm through a flowchart.

4M

8M

b) Explain Genetic Algorithm with a suitable example, considering one complete iteration.

8M

OR

- 8. Illustrate the following operators considering a simple problem of sequencing.
 - a. Reproduction or Selection Operator
 - b. Crossover operator
 - c. Mutation Operator

12M

UNIT-V

9. a) How Genetic Algorithm differs from Genetic Programming.

4M

b) Solving a Differential equation given below using Genetic Programming

$$\frac{dy}{dx} + y \cos x = 0,$$

where
$$y_{initial} = 1.0$$
 for $x_{initial}$ of 0.0.

8M

OR

10. Explain the procedure optimizing the sequence of operation in machining.

12M

Code: ADE524			1]			R-14	
Hall Ticket Number :						ı		-

M.Tech. II Semester Regular & Supplementary Examinations June 2017

Ν	1.Ie	ch. II Semester Regular & Supplementary Examinations June 2017 Design for Manufacturing	
Max. I Answe		Il five units by choosing one question from each unit ($5 \times 12 = 60$ Marks	

1.	a)	What is design philosophy?	4M
	b)	Explain the principles which are to be followed while designing a product considering the economical aspects.	8M
		OR	
2.	a)	As a design engineer discuss the relationship between material selection and process selection for a given component.	6M
	b)	Distinguish between design for manufacturing and detailed design explaining the various terms involved.	6M
		UNIT-II	
3.	a)	Briefly discuss redesigning of components for machining ease with the help of an example.	6M
	b)	What are the general design recommendations given for machined parts? OR	6M
4.	a)	Discuss the features that facilitate machining with suitable examples.	6M
	b)	Discuss the various machining processes in design aspect. UNIT-III	6M
5.		What are general design considerations for casting processes with respect to	
		a) Economical molding b) Solidification c) Surface integrity	
		d) Fettling and cleaning	12M
		OR	
6.		Enumerate design rules and guidelines applicable to casting tolerances.	12M
7.	a)	What are the design factors to be considered for forging operation? Explain.	6M
, .	b)	Explain the effect of thermal stresses in weld joints.	6M
	۵,	OR	Oivi
8.	a)	Briefly discuss the design of brazed joints.	6M
	b)	Determine the shape and position of parting line in the design of forging die. UNIT-V	6M
9.	a)	Explain Keeler Goodman forging line diagram.	6M
	b)	Discuss the design principles for deep drawing process.	6M
	-	OR	
10.	a)	What is visco-elastic behavior of materials? Explain in detail.	6M
	b)	Give a note on design considerations for injection moulding.	6M

Hall ⁻	Ticke	et Number :	
		PF522 R-14	
		ech. Il Semester Regular & Supplementary Examinations June 2017 Mechanics of Composite Materials	
_	-	(Machine Design) Irks: 60 Time: 3 Ho all five units by choosing one question from each unit (5 x 12 = 60 Mark ***********************************	
1.	a)	UNIT-I Compare the Metal Matrix composites and Ceramic Matrix Composites	8M
٠.	b)	What are the advantages of Polymer matrix composites?	4M
	٥,	OR	
2.	a)	Summarize the advantages of fiber reinforcement.	6M
	b)	Explain about natural composites.	6M
	,		
		UNIT-II	
3.		Explain the Autoclave and Filament Winding processes with neat sketch.	12M
		OR	
4.		Explain stiffness and compliance matrices for orthotropic materials.	12M
		UNIT-III	
5.		Determine the longitudinal modulus E_1 and the longitudinal tensile strength F_{1t} for a unidirectional carbon/epoxy composites with the following properties. $V_f = 0.65$, $E_{1f} = 235$ GPa, $E_m = 4.14$ GPa, $F_{tt} = 3450$ MPa and $F_{mt} = 104$ MPa.	12M
		OR	
6.		Explain the hydrothermal strains in unidirectional lamina.	12M
		UNIT-IV	
7.		Explain the upper bound technique determine to Young's modulus.	12M
		OR	
8.		The measured coefficients of thermal expansion of a unidirectional carbon/epoxy composites of fiber volume ratio Vf = 0.65 are	
		$_1$ = -0.9x10 ⁻⁶ /°C and $_2$ = 27x10 ⁻⁶ /°C. Determine the coefficients $_{1f}$ and $_{2f}$ of the fiber from the above and the following constituent properties V_f = 0.20, V_m = 0.34, E_{1f} = 235 GPa, E_m = 4.1 GPa and $_m$ = 41 x10 ⁻⁶ /°C.	12M
_		UNIT-V	 -
9.	a)	Explain the inter-laminar stresses in a laminated composites.	8M
	b)	Write notes on warpage of laminates.	4M
		OR This is the state of the sta	461-
10		Explain the design of laminated composite with other mechanical design issues.	12M

Hall Ticket Number : R-14

M.Tech. II Semester Regular & Supplementary Examinations June 2017

Mechanical Vibrations

(Machine Design)

Max. Marks: 60 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)

UNIT-I

1. a) Find the natural frequency of a vibratory system having a mass suspended from the free end of a massless spring. What is the effect of inertia of the spring mass?

6M

b) Define the terms: damping coefficient, critical damping coefficient and damping factor.

6M

OR

2. A 5-kg mass attached to the lower end of a spring whose upper end is fixed vibrates with a natural period of 0.5s.Determine the natural period when a 2.5 kg mass is attached to the midpoint of the same spring with the upper and lower ends fixed.

12M

UNIT-II

3. Write short notes on VIbrometers, accelerometers and velocity meters.

12M

OR

4. A uniform thin rod is suspended by a string as shown in the given figure. Derive the differential equation of motion of the system for arbitrary large angles.

12M

UNIT-III

5. Explain Eigen values briefly.

12M

OR

6. Determine the normal modes and frequencies of the system shown in the figure when n=1.

12M

Code: 4PF521

UNIT-IV

7. Using matrix iteration, determine the three natural frequencies and modes for the given cantilever beam.

12M

OR

8. Using the Rayleigh-Ritz method, determine the first two natural frequencies and mode shapes for the longitudinal vibration of a uniform rod with a spring of stiffness K₀ attached to the free end as shown in the figure. Use the first two normal modes of the fixed free rod in longitudinal motion.

12M

UNIT-V

9. The rotor of turbo super charger weighing 88.3 N is keyed to the center of a 25 mm diameter steel shaft 40 cm between bearings. Determine (a) the critical speeds of the shaft (b) the amplitude vibration of the rotor at a speed of 3200 rpm if the eccentricity is 0.015 mm.

12M

OR

10. Explain briefly free vibration of strings and torsional vibration of shafts.

12M