| B.Tech. || Semester Regular Examinations Nov/Dec 2020
Basic Electrical and Electronics Engineering
(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)

		Marks	co	$\underset{\text { Level }}{\text { Blooms }}$
1. a)	Obtain the equivalent inductance of three parallel connected inductors of value 10 mH .	7M	CO1	L3
	Three capacitors of $2 \mathrm{mF}, 5 \mathrm{mF}$ and 10 mF are connected in series. Find the equivalent capacitance	7M	CO1	-3
2. a)	Three resistances of R ohms are connected in delta. Transform it into an equivalent star with resistances R1, R2 and R3.	7M	CO1	L3
	Four resistors of $2 \mathrm{ohm}, 3 \mathrm{ohm}, 4 \mathrm{ohm} \& 5 \mathrm{ohm}$ respectively, are connected in parallel. What potential difference must be applied to the group in order that total power of 100 W may be absorbed?	7M	CO1	L
3. a) b)	Explain the speed control methods used for dc motors.	7M	CO2	L2
	A 4 pole lap wound d.c generator is running at 1500 rpm , flux is 7 mwb , number of slots is 52 , conductors per slot is 20 . Calculate the generated voltage.	7M	CO2	L3
4. a) b)	List out different types of losses present in transformer	7M	CO2	L1
	What is voltage regulation? Explain about synchronous impedance method of finding regulation.	7M	CO2	L4
5. a)	How is a rotating magnetic field produced in a three phase induction motor?			
	Explain in detail with relevant phasors.	7M	CO 2	L5
b)	Give the difference between an induction motor and a transformer.	7M	CO 2	L2
6. a)	Explain the operation of bridge rectifier with relevant diagrams.	7M	CO3	L2
	Explain about the principle of operation of PNP transistor? Discuss how it is operated as an amplifier?	7M	CO3	L4
7. a)	Give a comparison between induction heating and dielectric heating	7M	CO4	L5
	Describe the function of Cathode Ray Tube (CRT) with schematic diagram.	7M	CO 4	L2
8. a)	Explain various applications of CRO.	7M	CO4	L2
	Explain about dielectric heating with relevant diagrams.	7M	CO4	L2

7M CO4

Code: 19AC21T

I B.Tech. II Semester Regular Examinations Nov/Dec 2020

Differential Equations and Vector Calculus
(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer any five questions from the following ($5 \times 14=70$ Marks)

1. a) Solve $\frac{d^{2} y}{d x^{2}}+16 y=x \sin 3 x$

7M CO1
b) Solve $y^{11}-2 y^{1}+2 y=x+e^{x} \cos x$

7M CO1
2. Using method of variation of parameters, solve
$y^{11}-2 y^{1}+y=e^{x} \log x$
14M CO1
3. Solve $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=\log x \sin (\log x)$

14M CO2
4. Solve $(2 x-1)^{2} \frac{d^{2} y}{d x^{2}}+(2 x-1) \frac{d y}{d x}-2 y=8 x^{2}-2 x+3$
5. Solve $\left(p^{2}+q^{2}\right) y=q z$ by Charpit's method.
6. a) Find the directional derivative of $f(x, y, z)=x y^{3}+y z^{3}$ at the point $(2,-1,1)$ in the direction of the vector $\bar{i}+2 \bar{j}+2 \bar{k}$.

7M CO4
b) Prove that $\operatorname{div}\left(r^{n}-\frac{-}{r}\right)=(n+3) r^{n}$

7M CO4
7. a) If $\bar{f}=\operatorname{grad}\left[x^{3} y+y^{3} z+z^{3} x-x^{2} y^{2} z^{2}\right]$ then find $\operatorname{div} \bar{f}$ and $\operatorname{curl} \bar{f}$.

7M CO4
b) If $\bar{F}=\left(5 x y-6 x^{2}\right) \bar{i}+(2 y-4 x) \bar{j}$, evaluate $\int_{C} \bar{F} \cdot d \bar{r}$ along the curve C in the $x y$-plane, $y=x^{3}$ from the point $(1,1)$ to $(2,8)$.

7M CO4
8. Verify Green's theorem for $\int_{C}\left[\left(3 x-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$ where c is the boundary of the region bounded by $x=0, y=0$ and $x+y=1$.
\square

Code: 19A324T-B

| B.Tech. || Semester Regular Examinations Nov/Dec 2020

Engineering Graphics \& Design

(Computer Science and Engineering)
Max. Marks: 70
Answer any five questions from the following ($5 \times 14=70$ Marks)
\qquad

1. Construct a parabola when the distance between the focus and the directrix is 40 mm . Draw tangent and normal at any point P on the curve.
2. a) Construct a regular hexagon of side 30 mm when one side is (i) horizontal and (ii) vertical.
b) Construct a regular pentagon with 50 mm side by using general method.
3. A circle of 40 mm diameter rolls on a horizontal line without slipping. Draw the curve traced by a point R on the circumference of the circle for one complete revolution.
4. a) Draw the projections of a point F which lies in both the H.P. and V.P.
b) Draw the projections of a straight line CD 50mm long, parallel to H.P. and inclined to V.P. the end C is 10 mm in front of V.P. and D is 30 mm in front of V.P. the line is 15 mm above H.P.
5. A line measuring 75 mm long is inclined at an angle of 45° to the H.P. and 30° to V.P. The point P is 15 mm above H.P. and 20 mm in front of V.P. Draw the projections of the line.

14M CO3
L3
6. Draw the projections of a triangular plate of side 25 mm has its surface resting on the VP and edge inclined at 45° to HP .

14M CO4
L3
7. Draw the projections of a hexagonal prism, base 30 mm side and height 55 mm has its axis inclined at 30° to the HP and has an edge of its base, on the HP and inclined at 60° to the VP.
8. Convert the following isometric view to orthographic front and top views

\square
Code: 19A324T-A
| B.Tech. || Semester Regular Examinations Nov/Dec 2020

Engineering Graphics \& Design
 (Computer Science and Engineering)

Max. Marks: 70
Answer any five questions from the following ($5 \times 14=70$ Marks)

Marks CO

1. Construct an ellipse when the distance between the focus and the directrix is 30 mm and the eccentricity is $3 / 4$. Draw the tangent and the normal at any point P on the curve using directrix.
2. a) Construct a regular pentagon of side 40 mm .

7M CO1
b) Draw an arc of radius 30 mm touching two given straight lines which makes an obtuse angle of 135° between them.

7M CO1
3. Draw an epicycloid of a rolling circle 40 mm , which rolls outside another circle of 150 mm diameter for one complete revolution.
4. Draw an involute of a given equilateral triangle of side 25 mm . Also draw a normal and a tangent at any point on the involute.
5. a) Draw the projections of a point A lying in V.P. and 35 mm above H.P.
b) A line GH 45 mm long is in the H.P. and inclined to the V.P. the eng G is 15 mm in front of V.P. the length of the front view is 35 mm . draw the projections of the line. Determine its inclination to the V.P.

7M CO3
6. Draw the projections of a pentagonal plate of side 40 mm which is placed with a side on HP and surface inclined at 30° to HP and kept perpendicular to VP.

14M CO4
7. The front view of a rectangle plate having dimensions 70 mm 40 mm looks to be a square of 40 mm , if the shortest side of the plate is on the VP and inclined at 45° to the HP. Draw its top view.
8. Convert the following isometric view to orthographic view

Hall Ticket Number :

\square
Code: 19A521T / 19A522T

R-19

I B.Tech. II Semester Regular Examinations Nov/Dec 2020
Python Programming / Programming Through Python
(Common to CE, ME \& CSE) (Common to EEE \& ECE)

Max. Marks: 70
Time: 3 Hours

Answer any five questions from the following ($5 \times 14=70$ Marks)

		Marks	CO	Blooms Level
1.	Describe the various expressions in python with suitable examples.	14M	CO1	L1
2. a)	Define a program that displays different data types using variables and literal constants.	7M	CO1	L1
b)	Show that for a program to perform addition, subtraction, multiplication, integer division, floor division and modulo division (on two integers and float) python data types are crucial.	7M	CO1	L1
3. a)	Illustrate the need and importance of function in python.	7M	CO 2	L3
b)	What is python List? Describe the List usage with suitable examples	7M	CO2	L1
4. a)	Model a program to exchange the value of two variables with temporary variables	7M	CO2	L3
b)	Examine the properties of Dictionary keys with examples	7M	CO2	L3
5. a)	Write a python program to count the number of vowels in a string provided by the user.	7M	CO3	L3
b)	Determine the need of Exception with Arguments.	7M	CO3	L3
6. a)	Define classes in python with suitable example	7M	CO 4	L1
b)	Recall the fundamental object oriented concepts used in python.	7M	CO4	L1
7.	Describe the concept of queue implementation using python list.	14M	$\mathrm{CO5}$	L1
8.	Examine abstract data type with its types along with the syntax used.	14M	CO5	L1 \& L3

8. Examine abstract data type with its types along with the syntax used.
14M CO5 L1 \& L3

Hall Ticket Number :										

Code: 19AC22T

R-19

| B.Tech. || Semester Regular Examinations Nov/Dec 2020
 Applied Physics

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)
. a) What is plane diffraction grating? Determine the wavelength of light source by using plane diffraction grating.

Marks

	What is plane diffraction grating? Determine the wavelength of light source by using plane diffraction grating.	9M	CO1
b)	List the engineering application of diffraction.	5M	CO1
2. a)	Summarize the polarization by double refraction.	6M	CO1
b)	Give the construction and working of quarter wave plate and a half wave plate.	8M	CO1
3. a)	What is internal field? Derive the expression for internal field in dielectrics.	10M	CO 2
b)	Give the applications of dielectrics.	4M	CO2
4. a)	Describe the origin of permanent magnetic moment in an atom.	7M	CO 2
b)	Distinguish between soft and hard magnetic materials.	7M	CO 2

5. a) Define acceptance angle and numerical aperture. Derive an expression for acceptance angle and numerical aperture for an optical fiber.

10M CO3
b) The refractive indices of core and cladding materials of a step index fiber are 1.482 and 1.456. Calculate the following parameters (i) numerical aperture (ii) acceptance angle (iii) critical angle (iv) fractional refractive indices change.

4M CO3
6. a) Discuss the drift and diffusion currents in semiconductors.

7M CO4
b) Distinguish between direct band gap and indirect band gap of semiconductors.

7M CO4
7. a) Differentiate intrinsic and extrinsic semiconductors with suitable examples.

8M CO4
b) Derive Einstein relation in semiconductors.

6 M CO
8. a) Distinguish between type-I and type-II superconductors

7M Cos
b) What is superconductivity? List the applications of superconductors.

7M CO5

