	all Ticket Number :	R-2	20	
	Tech. II Semester Regular & Supplementary Examinations Sep	tembe	r 202	2
	Chemistry (Common to EEE, ECE and AI&ML)			
Ма	x. Marks: 70	Time: 3	3 Houi	rs
Note	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
1,00	2. In Part-A, each question carries Two mark.			
	3. Answer ALL the questions in Part-A and Part-B PART-A			
	(Compulsory question)			
1. /	Answer ALL the following short answer questions $(5 \times 2 = 10M)$		СО	Blooms Level
a)	Write about gas sensing electrodes		CO1	L1
b)	Compare primary batteries, secondary batteries and fuel cell	S.	CO2	L2
c)	Outline the preparation of Buna-N rubber		CO3	L4
d)	State the beer lambert law with its mathematical expression.		CO4	L1
e)	What are molecular machines? Give TWO examples.		CO5	L1
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 6$)	60 Mark	s)	
		Marks	СО	Blooms Level
	UNIT-I			20101
a)	What is single electrode potential? Derive Nernst equation			
	for the determination of single electrode potential.	6M	CO1	L2
b)	G	014		
	electrode.	OIVI	CO1	L2
۵)	OR Explain the construction of galvanic cell and its			
a)	Explain the construction of galvanic cell and its conventions. Derive an equation for the determination of			
	cell potential of galvanic cell.	6M	CO1	L2
b)	What is an ion selective electrode? Give the classification			
	of selective electrodes.	6M	CO1	L2
	UNIT-II			
a)	, , , , , , , , , , , , , , , , , , , ,	014		
۳,	Leclanche battery.	DIVI	CO2	L2
b)	Illustrate the construction working and applications of H ₂ -O ₂ fuel cell.	61/1	CO2	L4
	O ₂ 1001 0011.	OIVI	002	L4

Code: 20AC23T

OR

5.	a)	Describe the construction, working and applications of Li-MnO2 battery.	6M	CO2	L2
	b)	Illustrate the construction working and applications of propane-oxygen fuel cell.	6M	CO2	L4
		UNIT-III			
6.	a)	Differentiate thermoplastics and thermo settings.	6M	CO3	L4
	b)	Define step growth polymerization. Explain the preparation of Nylon-6, 6 by step growth polymerization process.	6M	CO3	L1
		OR			
7.	a)	Outline the synthesis Urea-Formaldehyde resin and discuss its applications.	6M	CO3	L4
	b)	Explain the conduction mechanism in polyacetylene and its uses.	6M	CO3	L2
		UNIT-IV			
8.	a)	Describe the working principle of Thin layer chromatography (TLC)? Write its applications	12M	CO4	L2
		OR			
9.	a)	Discuss the principle involved in conductometric titrations and its applications	6M	CO4	L2
	b)	Explain the working principle and applications of IR			
		spectroscopy	6M	CO4	L2
4.0		UNIT-V	014		
10.		Explain Rotaxanes as artificial molecular machines		CO5	L2
	b)	Describe molecular shuttle with an example	6M	CO5	L2
		OR			
11.		Explain about each of the following	CN 4		
		a) In and out molecular switching b) Rock and forth switching	6M	CO5	L2
		b) Back and forth switching *** End ***	6M	CO5	L2
		2			

	Hal	ll Ticket Number :														
	Coc	de: 20AC25T											J	R-	20	
		Tech. II Semeste	r Re	gulo	ar &	Sup	plen	nen	tary	Exc	min	atic	ns Se	ptemb	er 20:	22
							nico			•						
	Ma	x. Marks: 70		(Co	mmo	on to	EEE	, EC	E an	id Al	l&ML	_)		Time	3 Ho	ırc
	Ma	x. Marks. 70					****	****	;					IIIIIG.	3110	J13
	Note	e: 1. Question Pape				_		`		and F	Part-	B)				
		2. In Part-A, each3. Answer ALL	_							t₋R						
		J. Allswei ALL	шс ч	ucsi	10115	111 1 6	PAR			t-D						
					((Comp	ulsor			n)						
1. A r	ıswe	r ALL the following	g sho	ort a	nsw	er qu	estic	ons	(5 X 2	2 = 10	OM)			СО	Blooms
		s the theme of the I	_			-			e'?			ŕ			1	Level 2
,		are the meanings of								conte	ext in	'The	e Brook	ι.?	1	2
•		does the Prince take				-									1	2
•		is so unique about		_			-	J							1	2
e) I	s Mri	nalini a role model f	or yo	u? F	low?										1	2
							PAR	т-в								
		Answer five questi	ons b	y ch	oosii	ng on	e que	estio	n fro	m ea	ch ui	nit (5 x 12 =	= 60 Maı	·ks)	Disams
														Marks	CO	Blooms Level
					ι	INIT-	-l									
2.		Analyze the messa	age o	f Ha	zlitt c	n the	e con	duct	of lif	e.				12M	CO1	L4
	,					OR										
3.	a)	Identify the parts sentences.	ot sp	oeec	n of	the u	ınder	linec	l WO	rds II	n the	tolle	owing			
		i. It's a <u>breakab</u>	ole ite	em.												
		ii. He <u>ran</u> very <u>f</u>	ast.													
		iii. I like <u>black</u> ba														
		iv. What a <u>lovely</u>		•												
		v. Paint it on the		•				_					_	6M	CO3	L4
	b)	Choose the correspondence.	rect	wor	d (a	djec	tive/a	adve	rb)	to c	omp	lete	each			
		i. She just(and she left him	•	len /	sud	denly) ded	cided	l tha	t she	e'd ha	ad ei	nough			
		ii. I only had time morning.		a	_ (qı	uick /	quic	kly)	glan	ce at	t the	раре	er this			
		iii. I've (near / nea	rly) _		fir	nishe	d tha	t boc	k yo	u len	nt me					
		iv. The empty hous	• .						-							
		v. (Scarce / scarce											oly.			
		vi. She stumbled (sleep	y/sle	eepily	/)		into	the	bathı	room			6M	CO3	L4

		Code: 2	20AC251	
	UNIT-II			
4.	What do these lines convey?			
	'I come from haunts of coot and hern,			
	I make a sudden sally,			
	And sparkle out among the fern,			_
	To bicker down a valley.'	12M	CO1	L1
	OR			
5.	Write a grammatical paragraph of about 100 words using cohesive			
	devices on 'Advantages and Disadvantages of Online Classes.'	12M	CO4	L∠
	UNIT-III			
6.	Explain the theme of 'The Death Trap' mentioning a few characters.	12M	CO1	L1
	OR			
7. a)	Fill in the blanks using appropriate verb form given in brackets.			
	i. Where (be) you yesterday?			
	ii. I (attend) his wedding in 2020.			
	iii. 'Please have a cup of coffee.' Oh! Sorry. I have just(have) my			
	lunch.			
	iv. I found that my childrenalready (sleep) when I went home.			
	v. The call is (be) recorded.			
	vi. Why are you (shout) at me?	6M	CO3	L4
b)	Choose the appropriate one with regard to Subject-Verb			
	agreement.			
	i. One of the boys (is/are) not well.			
	ii. Neither he nor I(is/am) fine.			
	iii. Either the student or the teachers(is/are) in the campus.			
	iv. The scissors(does/do) not work.			
	v. Politics (is/are) not an interesting subject for me.			
	vi. Each doctor, nurse, and technician(get/gets) training here.	6M	CO3	L₄
	UNIT-IV			
8.	How do you appreciate Muhammad Yunus for his contribution to the			
	society?	12M	CO1	L2
	OR			
9.	Write a comparative essay on 'Are private schools better than state			
	schools?' – 250 words.	12M	CO4	L∠
	UNIT-V			
10.	"I was looking for subjects that would shake people in dance," What do			
	you learn from the life of Mrinalini Sarabhai?	12M	CO1	L2
	OR			
11.	Write a formal letter to your municipal commissioner bringing to his			
	notice about the growing number of malaria cases in your area due to			
	the poor maintenance of sanitation work.	12M	CO4	L۷

*** End ***

	Hall Ticket Number :	R-2	0]
	Code: 20AC21T I B.Tech. II Semester Regular & Supplementary Examinations Sep Differential Equations and Vector Calculus			
	(Common to all Branches) Max. Marks: 70 *********	Time: 3	Hours	;
	Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B			
	<u>PART-A</u> (Compulsory question)			
1. A	Answer ALL the following short answer questions $(5 \times 2 = 10 \text{M})$		CC	
a)	Solve $\frac{d^4x}{dt^4} + 4x = 0$		CO	1 L3
b)	Write the second order Legendre's Linear equation form.		CO	2 L3
c)	Form the differential equation by eliminating a and b from $log(az-1)=x+ay+b$.		CO	3 L2
d)	Find the greatest value of the directional derivative of the function		CO	4 L2
	$f = x^2yz^3$ at $(2,1,-1)$.			
e)	State stokes theorem.		СО	5 L3
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 0$)	60 Mark	s)	
		Marks	СО	Blooms Level
	UNIT-I			LOVOI
2.		12M	CO1	L3
	OR			
3.	Solve the differential equation $(D^2+4)y = \sec 2x$ by the method of variation of parameters.	12M	CO1	L3
4.	inductance L and resistance R in series and the charge q			
	at time t satisfies the equation $L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{C} = 0$. Given			
	that L= 0.25 henries, R = 250 ohms, $C=2\times10^{-6}$ farads, and			
	that when $t = 0$, charge q is 0.002 coulombs and the			
	current $dq/dt = 0$, obtain the value of q in terms of t.	12M	CO2	L3
	OR			

Code: 20AC21T

Solve
$$x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = \log x$$
. $\sin(\log x)$

[UNIT-III]

6. a) Form a partial differential equation by eliminating the arbitrary functions $f(x)$ and $g(y)$ from $z = y f(x) + x g(y)$. 6M CO3 L3

OR

7. Solve by the method of separation of variables $3u_x + 2u_y = 0$ where $u(x,0) = 4e^{-x}$. 12M CO3 L3

[UNIT-IV]

8. a) Find the directional derivative of $\phi = x^2yz + 4xz^2$

at $(1, -2, -1)$ in the direction of the vector $2\overline{1} - \overline{j} - 2\overline{k}$. 6M CO4 L2

b) Show that $\overline{\nabla}^2(r^n) = n(n+1)r^{n-2}$. 6M CO4 L3

OR

9. a) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$. 6M CO4 L2

b) Find whether the function

 $\overline{F} = (x^2 - y^3)\overline{i} + (y^2 - 3x)\overline{j} + (z^2 - xy)\overline{k}$ is irrotational and hence find scalar potential function corresponding to it.

UNIT-V

10. a) Find the work done in moving a particle in the force field $\overline{F} = 3x^2\overline{i} + (2xz - y)\overline{j} + z\overline{k}$ along the straight line from $(0,0,0)$ to $(2,1,3)$ 6M CO5 L2

NoR

11. Verify Green's theorem in the plane for $\int (x^2 - xy)^3 dx + (y^2 - 2xy) dy$ where c is a square with vertices $(0,0)$, $(2,0)$,

	Hall Ticket Number :						ı		_
(Code: 20A221T							R-20	

I B.Tech. II Semester Regular & Supplementary Examinations September 2022

Electrical Circuits

(Electrical and Electronics Engineering)

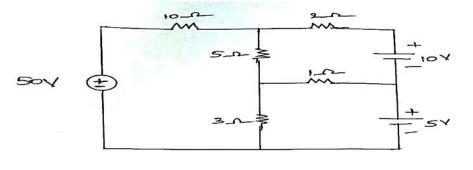
Max. Marks: 70 Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. In Part-A, each question carries Two mark.
- 3. Answer ALL the questions in Part-A and Part-B

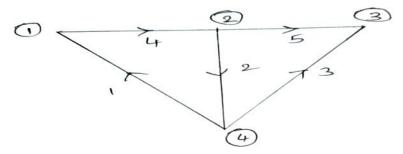
PART-A

(Compulsory question)


1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$	CO	Blooms Level
a) State the principle of Duality in electrical networks?	1	L1
b) Define Root Mean Square(RMS) value of an alternating quantity?	1	L1
c) List the advantages of three phase supply?	2	L2
d) State Thevenin's theorem for DC excitation?	4	L1
e) Define resonance for a series RLC circuit?	5	L1

PART-B

Answer *five* questions by choosing one question from each unit ($5 \times 12 = 60 \text{ Marks}$)


UNIT-I

- 2. a) Analyze super node analysis of an electrical network with suitable example. 4M 1 L3
 - b) Determine the mesh currents for the given circuit?

8M 1 L3

- OR
- 3. a) Explain the procedure of formulating Basic Cutset matrix?
 - ating Basic Cutset matrix? 4M 1 L4
 - b) Formulate the Basic Tieset matrix for the given connected graph?

8M 1 L4

	C	ode: 20A	221T	
	UNIT-II			
4. a	List the advantages of AC Supply?	4M	2	L1
b)	Determine the Average value and RMS value of a full wave rectifier			
	sinusoidal waveform.	8M	2	L2
	OR			
5. a	•	4M	2	L2
b)				
	resistor in series with a 0.1µF capacitor. Determine the total impedance, current, phase angle, capacitive voltage and resistive voltage	8M	2	L3
	UNIT-III	Olvi	2	LJ
6.	For a three phase star connected system, with neat phasor diagram, prove			
0.	that			
	i) Line Voltage = $\sqrt{3}$ x Phase Voltage			
	ii)Line Current= Phase Current	12M	4	L3
	OR			
7.	Analyze the measurement of three phase active power using two wattmeter			
	method?	12M	4	L3
	UNIT-IV			
8. a	Prove that maximum power can be transferred to load only if the Thevenin's			
	resistance is equal to Load resistance.	6M	4	L3
b)	Explain Millman's Theorem with a suitable example.	6M	4	L2
	OR			
9.	Determine the current flowing through 2 resistor as shown in the given			
	circuit using Superposition theorem.			
	57			
	(-) M			
	₹41~			
	\$3.P			
	Y			
	(1)4A			
		12M	4	L3
	UNIT-V			
10.	Derive the expressions for Resonance frequency, Bandwidth and quality	4014	_	
	factor for a series RLC circuit?	12M	5	L3
44 =	OR	CNA	0	
11. a)		6M	6	L3
b)	Two inductively coupled coils have self-inductances 50mH and 200 mH. If the coefficient of coupling is 0.5			
	i) Find the mutual inductance between the coils			
	ii) What is the mutual inductance when these two coils are connected in			
	series aiding and series opposing?	6M	6	L3
	*** End ***			

	Hall Ticket Number:			
		R-:	20	
	ode: 20A222T B.Tech. II Semester Regular & Supplementary Examinations Sep Fundamentals of Electronic Devices and Circuits			22
N	(Electrical and Electronics Engineering) lax. Marks: 70	Time:	3 Но	urs
N	******* ote: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B PART-A			
	(Compulsory question)		D	looms
1. Ar	nswer ALL the following short answer questions $(5 \times 2 = 10M)$	C)	Level
a) [Define ripple factor and give its significance.	CC)1	L1
b) (Obtain the relation between and of a transistor?	CC)2	L1
c) [ist out the types Amplifiers.	CC)3	L2
d) (Compare MOSFET with JFET?	CC)4	L1
e) \	What are the required properties of photo diode?	CC)5	L1
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 =$			Blooms
2. a	UNIT-I One of the Clippers and explain any two clippers with	Marks	CO	Level
	neat wave forms.	6M	CO1	L1
b	The voltage across a silicon diode at a room temperature of 310°k is 0.64 V when 2 mA current flows through it. If the voltage is increased to 0.72 V, calculate the diode current at the same temperature? OR	6M	CO1	L3
3. a		6M	CO1	L2
b	Design a voltage regulator using Zener diode for the following specifications Unregulated input voltage = 20-40 V Regulated output voltage = 12 V			
	Load current = 0 -10 mA I_{Zmin} = 2mA and I_{Zmax} = 40 mA.	6M	CO1	L3
4. a	List the BJT configurations? Explain input and output characteristics of CE configuration with neat graphs.	6M	CO2	2 L3

Code: 20A222T

b) For a collector to base bias circuit, show that 6M CO2 L2 **OR** List the biasing circuits of BJT. Explain voltage divider 5. biasing circuit and derive its stability factors. 12M CO2 L2 **UNIT-III** For the CE transistor amplifier stage, 6. derive the expression for the following in-terms of its h parameters: (i) current gain (ii) Voltage gain (iii) voltage gain including source resistance. 12M co3 L2 OR Draw the equivalent circuit of a transistor and explain the 7. amplification action with graphical approach. 12M co₃ L2 **UNIT-IV** Define and explain the three parameters of a JFET give the relation between them 6M co4 L1 b) A common source FET amplifier uses load resistance R_L and an un bypassed resistors in the source circuit. The FET has a drain resistance $R_d = 200 \text{ K}$ μ = 20. Compute the voltage gain and output impedance R_o , for $R_s = 10 \text{ K}$ 6M CO4 L3 **OR** Explain about CS amplifier and derive the expression for 9. a) gain and input impedance? 6M co4 L1 b) An N-channel JFET has $I_{dss} = 8$ mA and $V_P = -5V$. Determine the minimum value of V_{ds} for pinch off region and the drain current I_{ds} for $V_{gs} = -2 \text{ V}$ in pinch off region. 6M CO4 L3 UNIT-V 10. a) Define Tunneling phenomenon? Describe the operation of tunnel diode? 6M CO5 L1 Show the four-layer construction, two transistor equivalent circuit of an SCR and explain the device operation in detail. 6M CO5 L2 OR 11. a) Describe the construction and working of UJT with its 8M CO5 equivalent circuit and V I characteristics? L1 b) Explain the VI Characteristics of LED. 4M CO5 L1 *** End ***