UNIT-I 1. The major and minor axes of an ellipse are 120mm and 80mm. Draw an ellipse by Concentric Circles method OR 14M coi 12 2. a) Using a compass and ruler, construct a square with a given side length 40mm. 4M coi 12 b) Sketch an epicycloid with the radius of the rolling circle as 4 cm and the radius of the fixed circle as 12 cm. 10M coi 12 3. A line KL, 90 mm long, is inclined at an angle of 30 degrees to the horizontal reference plane and 60 degrees to the vertical reference plane. One end of the line is 15mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. 14M coi 12 6 0R 14M coi 12 6 0 0 14M coi 12 7 0 0 10M coi 12 8 0 0 14M coi 12 9 0 0 14M coi 12 9 0 0 14M coi 12 9 0 0 14M coi 12 14M coi 14 0 14M coi 12 14M coi 12 14M coi 14 14M coi 14 14M coi 14 14M coi 14 14M coi 14 14M coi 14 14M coi 14 14M coi 14 14M coi 14 14M coi 14 14M coi 14 14M coi 14 14M	Н	all Ticket Number :			
 I B.Tech. II Semester Regular Examinations July 2023 Engineering Drawing		do: 204224T P	R-20)	
Engineering Drawing (Common to CSE, CSE(AI) and CSE(DS)) Max, Marks: 70 Time: 3 Hours Answer five full questions by choosing one question from each unit (5 x 14 = 70 Marks) Marks CO BI UNIT-I 1. The major and minor axes of an ellipse are 120mm and 80mm. Draw an ellipse by Concentric Circles method OR 14M co1 L2 2. a) Using a compass and ruler, construct a square with a given side length 40mm. 4M co1 L2 b) Sketch an epicycloid with the radius of the rolling circle as 4 cm and the radius of the fixed circle as 12 cm. 10M co1 L2 I UNIT-II 10M co1 L2 3. A line KL, 90 mm long, is inclined at an angle of 30 degrees to the horizontal reference plane and 60 degrees to the vertical reference plane. One end of the line is 15mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. 14M co2 L3 CR I 14M co2 L3 4. A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P 14M co2 L3 5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. 7M co3 L3 b) A circular plate of diameter 50mm is resting on HP on a point on					
Max. Marks: 70 Time: 3 Hours Answer five full questions by choosing one question from each unit (5 x 14 = 70 Marks) Marks CO BI Image: Answer five full questions by choosing one question from each unit (5 x 14 = 70 Marks) Marks CO BI Image: Answer five full questions by choosing one question from each unit (5 x 14 = 70 Marks) Marks CO BI Image: Answer five full questions by choosing one question from each unit (5 x 14 = 70 Marks) Marks CO BI Image: Answer five full questions by choosing one question from each unit (5 x 14 = 70 Marks) Marks CO BI Image: Answer five full questions by choosing one question from each unit (5 x 14 = 70 Marks) Marks CO BI Image: Answer five full questions by choosing one question from each unit (5 x 14 = 70 Marks) Marks CO BI Image: Answer five full questions by choosing one question from each unit (5 x 14 = 70 Marks) Marks CO BI Image: Answer five full questions by choosing one question from each unit (5 x 14 = 70 Marks) Marks CO BI Image: Answer five full question for each of the fixed circle as 12 cm. Image: Answer five full question for each of 0 degrees to the vertical reference plane. One end of the fine k12 on the vertical reference plane and 60 degrees to the vertical reference plane a		C ,			
Answer five full questions by choosing one question from each unit (5 x 14 = 70 Marks) Marks CO BI UNIT-I 1. The major and minor axes of an ellipse are 120mm and 80mm. Draw an ellipse by Concentric Circles method OR 2. a) Using a compass and ruler, construct a square with a given side length 40mm. b) Sketch an epicycloid with the radius of the rolling circle as 4 cm and the radius of the fixed circle as 12 cm. UNIT-II 3. A line KL, 90 mm long, is inclined at an angle of 30 degrees to the horizontal reference plane and 60 degrees to the vertical reference plane. One end of the line is 15mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. OR 4. A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P 5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections OR 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45°					
UNIT-I 1. The major and minor axes of an ellipse are 120mm and 80mm. Draw an ellipse by Concentric Circles method 14M CO1 L2 0R 0R 2. a) Using a compass and ruler, construct a square with a given side length 40mm. 4M CO1 L2 b) Sketch an epicycloid with the radius of the rolling circle as 4 cm and the radius of the fixed circle as 12 cm. 10M CO1 L2 Image: UNIT-II 3. A line KL, 90 mm long, is inclined at an angle of 30 degrees to the horizontal reference plane and 60 degrees to the vertical reference plane. One end of the line is 15mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. 14M CO2 L3 0R 0R 14M CO2 L3 3. A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P 14M CO2 L3 5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. 7M CO3 L3 b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 7M CO3 L3 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 7M C03 L3	-	Answer five full questions by choosing one question from each unit (5 x 14 =			
 The major and minor axes of an ellipse are 120mm and 80mm. Draw an ellipse by Concentric Circles method OR a) Using a compass and ruler, construct a square with a given side length 40mm. b) Sketch an epicycloid with the radius of the rolling circle as 4 cm and the radius of the fixed circle as 12 cm. UNIT-II A line KL, 90 mm long, is inclined at an angle of 30 degrees to the horizontal reference plane and 60 degrees to the vertical reference plane. One end of the line is 15mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. A sequare plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 			Marks	СО	BL
 80mm. Draw an ellipse by Concentric Circles method OR 2. a) Using a compass and ruler, construct a square with a given side length 40mm. b) Sketch an epicycloid with the radius of the rolling circle as 4 cm and the radius of the fixed circle as 12 cm. IMIT-II 3. A line KL, 90 mm long, is inclined at an angle of 30 degrees to the horizontal reference plane and 60 degrees to the vertical reference plane. One end of the line is 15mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P 5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 		UNIT–I			
OR 2. a) Using a compass and ruler, construct a square with a given side length 40mm. 4M col 12 b) Sketch an epicycloid with the radius of the rolling circle as 4 cm and the radius of the fixed circle as 12 cm. 10M col 12 b) Sketch an epicycloid with the radius of the rolling circle as 4 cm and the radius of the fixed circle as 12 cm. 10M col 12 cm and the radius of the fixed circle as 12 cm. 10M col 12 Junit – II 3. A line KL, 90 mm long, is inclined at an angle of 30 degrees to the vertical reference plane. One end of the line is 15mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. 14M col 12 A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P 14M col 13 5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. 7M col 13 b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 7M col 14 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 7M col 14	1.	The major and minor axes of an ellipse are 120mm and			
 2. a) Using a compass and ruler, construct a square with a given side length 40mm. b) Sketch an epicycloid with the radius of the rolling circle as 4 cm and the radius of the fixed circle as 12 cm. 10M CO1 L2 10M CO2 L3 10M CO3 L3 1		80mm. Draw an ellipse by Concentric Circles method	14M	CO1	L2
 side length 40mm. b) Sketch an epicycloid with the radius of the rolling circle as 4 cm and the radius of the fixed circle as 12 cm. UNIT-II A line KL, 90 mm long, is inclined at an angle of 30 degrees to the vertical reference plane and 60 degrees to the vertical reference plane. One end of the line is 15mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45°. 		••••			
 b) Sketch an epicycloid with the radius of the rolling circle as 4 cm and the radius of the fixed circle as 12 cm. UNIT-II 3. A line KL, 90 mm long, is inclined at an angle of 30 degrees to the horizontal reference plane and 60 degrees to the vertical reference plane. One end of the line is 15mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. 4. A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P 5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 	2. a)				
 cm and the radius of the fixed circle as 12 cm. UNIT-II 3. A line KL, 90 mm long, is inclined at an angle of 30 degrees to the horizontal reference plane and 60 degrees to the vertical reference plane. One end of the line is 15mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. 4. A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P 5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 		-	4M	CO1	L2
 UNIT-II A line KL, 90 mm long, is inclined at an angle of 30 degrees to the horizontal reference plane and 60 degrees to the vertical reference plane. One end of the line is 15mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 	b)		4014		
 A line KL, 90 mm long, is inclined at an angle of 30 degrees to the vertical reference plane and 60 degrees to the vertical reference plane. One end of the line is 15mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. HP and 20mm in front of VP. Find the traces of line KL on the vertical reference planes. HP and perpendicular to VP. The vertical reference planes. HM CO2 L3 HM CO3 L3 NM CO3 L3 NM CO3 L3 HP and perpendicular to VP. Draw its projections HP and perpendicular			10IVI	CO1	L2
to the horizontal reference plane and 60 degrees to the vertical reference plane. One end of the line is 15mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. 14M co2 Ls OR 4. A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P 5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. 5. A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45°	_				
 vertical reference plane. One end of the line is 15mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. OR A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P UNIT-III A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 	3.				
 HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes. OR A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P 5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 		-			
 the horizontal and vertical reference planes. OR A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P UNIT-III A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 		•			
 OR A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P UNIT-III 5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 			1 <i>4</i> M	<u> </u>	10
 A 100mm long line is parallel to and 40mm above the H.P. Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P 5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 		-	14101	002	L3
 Its two ends are 25mm and 50mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P 14M CO2 L3 5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. 7M CO3 L3 b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 0R 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 	4.				
 respectively. Draw its projections and find its inclination with the V.P UNIT-III A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 					
 the V.P UNIT-III 5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 					
 5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 			14M	CO2	L3
 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 		UNIT–III			
 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections. b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 	5. a)	A square ABCD of 40 mm side has a corner on the H.P. and			
 projections. b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections OR 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 	,	•			
 b) A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 7M CO3 L3 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 		equally inclined to the H.P. and parallel to the V.P. Draw its			
 point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections 7M CO3 L3 OR 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° 		projections.	7M	CO3	L3
 HP and perpendicular to VP. Draw its projections 7M CO3 L3 OR 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30^o to V.P. Its plane is inclined at 45° 	b)	A circular plate of diameter 50mm is resting on HP on a			
OR 6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30 ⁰ to V.P. Its plane is inclined at 45°		point on the circumference with its surface inclined at 45° to			
 A regular pentagon of 25 mm side has one side on the ground and inclined at 30⁰ to V.P. Its plane is inclined at 45° 		HP and perpendicular to VP. Draw its projections	7M	CO3	L3
ground and inclined at 30° to V.P. Its plane is inclined at 45°					
•	6.				
to the H.P. Draw its projections. 14M CO3 L			A 48 4		
		to the H.P. Draw its projections.	14M	CO3	L3

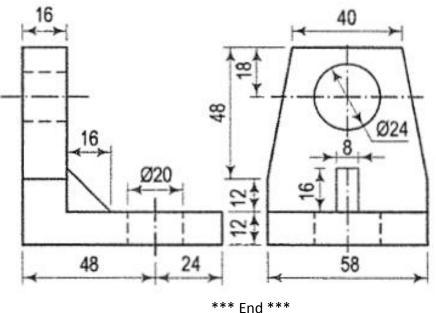
UNIT–IV

7. A hexagonal pyramid, base 30 mm side and axis 55 mm long, has an edge of its base on the ground. Its axis is inclined at 45⁰ to the ground and parallels to the H.P. Draw its projections.

14M CO4 L3

OR

 A square prism, base 40mm side and height 65mm has its axis inclined at 45° to the HP and has an edge of its base, on the HP and inclined at 30° to the VP. Draw its Projections 14M CO4 L3


UNIT–V

9. Draw the front view, top view and right side view for the following figure

14M CO5 L3

OR

^{10.} Draw the isometric view for the following figure

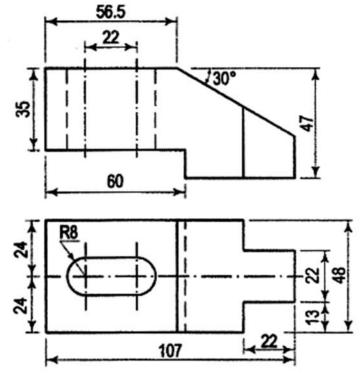
14M CO5 L3

		Hall Ticket Number :															
	C	ode: 20A324T-A	I			11		1	1	1	1				R-20		
	•	I B.Tech	n. II S	em	este	er Reg	gulo	ar Ex	kam	inat	ions	; July	/ 202	23			
					Eng	inee	ring	g Dr	awi	ng		-					
	Μ	ax. Marks: 70				Scier							(4		me: 3 H		
		Answer five full ques	tions	ру с	choos	-	-	uest ****	ion ti	om e	eacn	unit	(5 X 1	4 = 1	O Marks)	
					-										Marks	СО	ΒL
		-					INIT					_					
1.		Construct an ellipse u axes of lengths 7 cm	•			pectiv	ely.		netho	d wit	:h ma	ajor a	nd mi	inor	14M	CO1	L2
2	c)	Construct a regular b			foid		OR mark					thod			714	CO1	10
Ζ.	a) b)	Construct a regular he Construct a cycloid of a	•					-	•••					nout	7 171	CO1	L2
	0)	slipping.		000		alamot		VIIIOII	10110	on a	otrai	gritin		lout	7M	CO1	L2
						U	NIT	- II									
3.	a)	H.P. The line joining t line joining their top	heir f	ront	view	rs mak	es a	an ar	igle o	of 45	⁰ with	ר xy,	while	the			
	LX	point B from H.P.			-14-		-1			00		I			7M	CO2	L3
	b)	A line AB 60mm long 35mm in front of VP. inclination with VP.	•					•							7M	CO2	L3
							OR										
4.	a)	The top view of a 75 front view is 50mm. It the projections of AB	s one	e en	d A is	s in the	e HF	^o and	112n	nm ir	n fror	nt of \	•		7M	CO2	L3
	b)	A line IJ is inclined at to the vertical referen projected length of lin	ce pl	ane	. The	true l	eng	th of	line	IJ is	120	•			7M	CO2	L3
						U	NIT	-111									
5.	a)	A thin 30 ⁰ -60 ⁰ set squ HP. Its surface makes				•	•							^o to	7M	CO3	L3
	b)	Draw the projections of inclined at 30° to the front of the V.P.								•					7M	CO3	L3
							OR										
6.	a)	A square ABCO of 50 inclined at 30° to the l parallel to the H.P. Dr	H.P.	and	the c	liagon									7M	CO3	L3
	b)	A rhombus has its dia the rhombus, when it diagonal 60mm long a	is so	o pla	ced t	hat its	top	o viev	v app	bears	s to b	e a s	square	e of			
		30 ⁰ with VP.													7M	CO3	L3

UNIT–IV

7. Draw the projections of a pentagonal prism, base 30 mm side and axis 50 mm long, resting on one of its rectangular faces on the H.P., with the axis inclined at 45^o to the V.P.

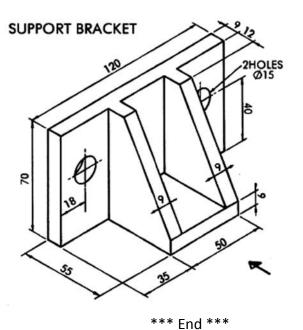
14M CO4 L3


OR

UNIT-V

8. A hexagonal pyramid, base 25 mm side and axis 50 mm long, has an edge of its base on the ground. Its axis is inclined at 30^o to the ground and parallels to the V.P. Draw its projections.

14M CO4 L3


9. Draw the isometric view for the following figure

14M CO5 L3

10. Draw the front view, top view and left side view for the following figure

14M CO5 L3

-

Code: 20A324T-D

I B.Tech. II Semester Regular & Supplementary Examinations July 2023

Engineering Drawing

(Common to CSE, AI&DS and AI&ML)

Max. Marks: 70

Time: 3 Hours

R-20

Answer *five full* questions by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT-I

1. Construct a parabola when the distance between the focus and directrix is 50mm. Also draw the tangent and normal to any point on the curve.

OR

 Construct an epicycloid of a circle 60 mm diameter which rolls outside of another circle of 120 mm diameter for one revolution. Draw tangent and normal to any point on the curve.

UNIT–II

3. A line NS, 80mm long has its end N, 10mm above the HP and 15mm in front of the VP. The other end S is 65mm above the HP and 50mm in front of the VP. Draw the projections of the line and find its true inclinations with the HP and VP.

OR

- 4. Draw the projections of the following points on the same ground line, keeping the projections 30mm apart.
 - i. A, in the H.P & 30mm, behind the V.P
 - ii. B, 30mm above the H.P & 15mm in front of the V.P.
 - iii. C, in the V.P & 50mm above the H.P.
 - iv. D, 30mm below the H.P & 35mm behind the V.P.
 - v. E, 25mm above the H.P & 65mm behind the V.P.
 - vi. F, 45mm below the H.P & 35mm in front of the V.P.
 - vii. G, in both the H.P & the V.P.

UNIT-III

 A regular pentagon of 25mm side has one side on the ground. Its plane is inclined at 45⁰ to the HP and perpendicular to the VP. Draw its projections

Page 1 of 2

14M

14M

Marks

14M

14M

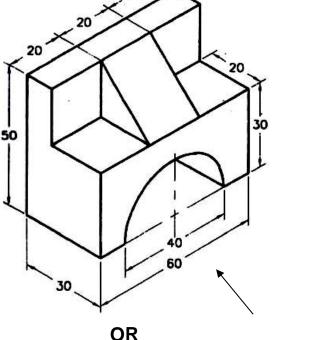
14M

6. A semi-circular lamina of 64mm diameter has its straight edge in VP and inclined at an angle of 45° to HP. The surface of the lamina makes an angle of 30[°] with VP. Draw the projections

UNIT-IV

A hexagonal pyramid, base 25mm side and axis 50mm long, has an 7. edge of its base on the ground. Its axis inclined 30° to the ground and parallel to the V.P. Draw its projections

OR


Draw the projections of a pentagonal prism, base 25mm side and 8. axis 50mm long, resting on one of its rectangular faces on the H.P. with the axis inclined 45° to the V.P.

UNIT-V

Draw the top view, front view and left side view for the object shown 9. below.

Draw the isometric view of hexagonal prism, with side of base 25mm 10. and axis 60mm long. The prism is resting on its base on HP, with an edge of the base parallel to VP. 14M

*** End ***

14M

14M

14M

Hall Ticket Number :			
Code: 20AC22T	R-20		
I B.Tech. II Semester Regular & Supplementary Examinations July Applied Physics	2023		
(Common to CSE, AI&DS, CSE(AI) and CSE(DS)) Max. Marks: 70 Tim	e: 3 H	ours	
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$)	СО	BL
a) List any four engineering applications of polarization.		CO1	L1
b) Define Magnetic susceptibility.		CO2	L1
c) What is critical angle of propagation in optical fibers?		CO3	L1
d) Write the Einstein's relation in semiconductor.		CO4	L1
e) Write any two important properties of superconductors.		CO5	L1
PART-B			
Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$			וח
UNIT–I	/larks	CO	BL
2. a) Explain the phenomenon of interference of light due to thin	10M	CO1	L2
refraction into the plate is 30°. Calculate the smallest thickness of the plate, which will make it appear dark by reflection.	2M	CO1	L3
OR			-
3. Obtain the conditions for maxima and minima in Fraunhoffer			
diffraction due to single slit.	12M	CO1	L4
UNIT–II 4. a) What is meant by polarization in dielectrics?	2M	CO2	L1
 b) Explain electronic polarizability in atoms and obtain an expression for electronic polarizability in terms of radius of the atoms. 	10M	CO2	L2
OR			
5. a) Explain hysteresis loop in detail.	8M	CO2	L2

	b)	Classify the magnetic materials based on their hysteresis curve as soft and hard magnetic materials and mentioned			
		their distinct characteristic features.	4M	CO2	L4
•	、				
6.		State and prove the Gauss's theorem for divergence.	6M	CO3	L3
	b)	Derive the electromagnetic wave energy using Poynting's theorem.	6M	CO3	L3
		OR			
7.	a)	Derive an expression for acceptance angle and numerical aperture.	10M	CO3	L3
	b)	Calculate the acceptance angle of a given optical fiber, if the refractive indices of core and cladding are 1.562 and 1.497			
		respectively.	2M	CO3	L3
		UNIT–IV			
8.	a)	Explain classification of solids into conductors, semiconductors and insulators	6M	CO4	L2
	b)	Derive the drift and diffusion current in semiconductors.	6M	CO4	L2
		OR			
9.	a)	State Hall effect and derive the value of Hall coefficient.	10M	CO4	L3
	b)	Mention the applications of Hall effect.	2M	CO4	L1
		UNIT–V			
10.	a)	What do you understand by Meissner's effect in super conductors?	4M	CO5	L1
	b)	Discuss the electron–phonon interaction and the formation of Cooper pairs in superconductors on the basis of the BCS			
		theory.	8M	CO5	L3
		OR			
11.	a)	Explain the physical and chemical properties of nano materials.	4M	CO5	L2
	b)	Explain the synthesis of nano materials by ball milling.		CO5	

Hall Ticket Number :		_	
Code: 20A223T	R-20		
I B.Tech. II Semester Regular & Supplementary Examinations July Basic Electrical and Electronics Engineering (Common to CE, CSE, AI&DS, CSE(AI) and CSE(DS))	2023		
	e: 3 Hou	rs	
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A 			
(Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$ a) State and explain Kirchoff's Voltage Law.	co 1	BL 2	
b) Write the necessity of commutator for operation of a D.C machine	e? 2	3	
c) Write the principle of operation of transformer?	3	2	
 d) Draw the circuit diagram symbols for p-n-p and n-p-n transistors 	4	1	
e) How are moving coil instruments classified?	5	1	
$\frac{PART-B}{PART-B}$ Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Matrix)	arks)		
	Marks (СО	BL
UNIT–I			
2. a) Two resistances when they are in series have an equivalent			
resistance of 9ohms and when connected in parallel have an equivalent resistance of 2ohms. Find the two resistances?	6M	1	2
b) What is the potential difference between X and Y in the network	OIVI	1	2
shown in Fig.1.			
2Ω X 4V			
$2V$ $3\Omega^{2}$ $3\Omega^{2}$ $3\Omega^{2}$			
y y			
Fig.1	6M	1	3
OR			
3. a) Two resistors 4 ohms and 6 ohms are connected in parallel. If			
the current supplied by source is 30 A. Find the equivalent			
resistance and current through each branch.	6M	1	2
b) A 35 V d.c supply is connected across a resistance of 600ohms			
in series with an unknown resistance R. A voltmeter having a			
resistance 1200 ohms is connected across 600ohms and			

shows a reading of 5V. Calculate the value of resistance R. 6M 1 3

		UNIT-II			
4.	a)	Derive the torque equation of a DC motor?	6M	2	3
	b)	A 1500 kW, 550V, 10 pole generator runs at 150 r.p.m. There			
		are 2500 lap connected conductors and the full load copper			
		losses are 25KW. The air gap flux density has a uniform value of 0.9wb/m2. Calculate the no load terminal voltage and the			
		area of the pole shoe?	6M	2	3
		OR			-
5.	a)	Draw the circuit diagram of DC series generator and write the			
		relations between voltages and currents? Write its applications.	6M	2	2
	b)	Explain the Swinburne's test to determine the efficiency of a	014		
		DC machine.	6M	2	1
6	a)	UNIT–III Explain principle of operation of a 1 phase transformer?	6M	3	2
0.	b)	Derive the expression for the regulation of a 1 phase	OIVI	3	2
	0)	transformer and discuss whether its value should be low or high			
		to get the better efficiency?	6M	3	4
		OR			
7.	a)	Explain in detail about the constructional features and operation			
		of an alternator?	6M	3	1
	b)	Draw and explain about the torque slip characteristics of an induction motor?	6M	•	•
			OIVI	3	2
8.	a)	Explain about the principle of operation of a full wave rectifier			
	,	with the help of circuit diagram?	6M	4	2
	b)	Explain in detail about the differences between PNP and NPN			
		transistors?	6M	4	3
		OR			
9.	a)	Discuss about the differences between half wave rectifier and			
	៤)	full wave rectifier by using the output waveforms?	6M	4	4
	b)	Draw and explain the input and output characteristics for transistor CE configuration?	6M	4	3
		UNIT-V	OIVI	т	0
10.		Draw the block diagram of a general purpose CRO and explain			
		the functions of various blocks	12M	5	1
		OR			
11.		Explain the working of MCB with neat diagram.	12M	5	3
		*** End ***			

	На	II Ticket Number :											
	Cod	e: 20AC21T]	1			R-20)		
		B.Tech. II Seme	ster Regula	r & Supp	olemer	ntary	Exar	nino	ations	July 202	3		
		Differe	ential Equ					Cal	culus				
	Мах	. Marks: 70	(Corr	nmon to	all Bran	iches)				Time: 3	Hours		
	NI-4-	1 Oracita Deserv	· · · · · · · · · · · · · · · · · · ·	*****		I D.	4 D						
	Note	 Question Paper In Part-A, each Answer ALL th 	question carr	ies Two I	marks.		art-B)					
			(A	PAR									
1	Δρεινιο	r ALL the followi		ompulsor	• •		(5)	().	_ 10M)	<u> </u>	`	וח
1.		d the particular i)	CC		BL
		te the second o		1000	aeer E							1 2	2 3
			•			•		UIII	1			3	2
		d the partial difference differe				хтоу						4	3
		te Stoke's Thore		_ J _{×yz}	2							5	3
	0) 010		CIII	ПАП	тр							-	Ū
		Answer <i>five</i> question	ons by choosir	PAR ng one qu		om ea	ch un	it (5	x 12 = 0	60 Marks))		
										Marks	CO	В	L
				UN	IT–I								
	2.	Solve ($e_{\mathcal{Y}} = e^{\left[e_{2x}\right]}$	UN + <i>sin2</i>	$\frac{ \mathbf{T}-\mathbf{I} }{ \mathbf{T}-\mathbf{I} }$	1				12M	1		3
				Ô	R								
	3.	Using variation	n of param	eter to :	solve	$\frac{d^2y}{d^2}$ +			12		4		0
		2			T–II	dx2	$a^{2}y$	/ =	secax 12		1		3
	4.	tic				ē			ecax	5			
	4.	Solve $(1 + \frac{1}{x)^2}$	$\frac{d^2y}{dx^2} + (1 +$	$\frac{\left -\frac{dy}{dx} \right ^2}{\left \frac{dy}{dx} \right ^2}$	$+\frac{-11}{y} =$	2sin	[10g((1 +	x)]	12M	2		3
				0	R								
	5.	An uncharged	l con en	U er of ca	R apacity	, C is	s ch	arg	ed by	,			
		applying an e.	m.f $\frac{Esint}{e^{IIC}}$.tl	hroug[]	leads	of se	elf-in	duc	ctance	(
		L and negligib	V 100										
		charge on one	of the pla	tes is $\frac{\vec{E}}{2}$	={sin_	$\frac{t}{\overline{LC}}$ –	$\frac{t}{\overline{LC}}$	cos -	$\left\{\frac{t}{\overline{LC}}\right\}$	12M	0		•
		0	•		<u>, </u>		√	1	\ <u></u>	I ZIVI	2		3
	6 0)	Form the pe	rtial diffor			n h		limi	notino				
	u. a)	Form the pa			-		-		-				
	I \	arbitrary function						5 (1	– <i>u</i> ()	6M	3		3
	b)	Solve	$\sin f$ and g $(z) = \frac{1}{2} $	from = -x)q =	$= \int G$ $= \mathbb{Z}^{2} (\mathbb{Z})^{\infty}$	- 2				6M	3		3

OR

		••••			
7.		Using the method paration of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + \frac{1}{u} \text{ where } u(x, 0) = 6e^{-3x}$			
		SOIVE $\partial x = \frac{1}{2} \partial t + u$ where $u(x, 0) = 6e^{-3x}$	12M	3	3
		UNIT-IV			
8.	a)	Find the directional derivative of $\frac{-6e^{-3x}}{-1x}$			
		the point (2,-1,1) in the direction $G_{f(x,y,z)} = xy^2 + yz^3 a_t^t$ the point (2,-1,1) in the direction $G_{f vector} \overline{\tau} + \overline{j} + \overline{k}$.	6M	4	3
	b)	the print (2, -1) between the surfaces $\frac{-y}{e^2} + \frac{2}{e^2} + $			
		$z = x^2 + y^2 - 3$ at the point (2,-1, 2).	6M	4	3
		OR			
9.		OR ;tor			
		Find constants a,b,c so that the $ve_{\overline{f}} + (4)$			
		$A = (x + 2y + az)\bar{\iota} + (bx - 3y - z)J_{\bar{A}} - \nabla (t + cy + 2z)\bar{k}$	12M	4	3
		UNIT-V			
10.		Verify Green's theorem for $\int_{c}^{L} [(\frac{\mathbf{T} - \mathbf{V}}{(\mathbf{y} + y^{2})} a_{x + x^{2} dy}]$			
		where C is bounded by y=x and $y = x_2$	12M	5	3
		OR			
11.		Verify Stoke's theorem for $\frac{\operatorname{and} y}{\operatorname{oR}^2 + 2}$ 2 and $\frac{\operatorname{and} y}{\operatorname{oR}^2 + 2}$ 2 and $\operatorname{around} the \operatorname{rectangle} \operatorname{bounded} \operatorname{by the lines}$			
		$x = \underline{\exists} a, y = 0, y = b$	12M	5	3
		*** End ***			

Ha	I Ticket Number :			٦
Code	∋: 20A521T	R-2	20	
I	B.Tech. II Semester Regular & Supplementary Examinations .	July 20	23	
	Data Structures through Python			
	(Common to CSE, AI&DS, AI&ML, CSE(AI) and CSE(DS))	c		
Max	. Marks: 70 ********	Time: 3	3 Hour	S
Note	1. Question Paper consists of two parts (Part-A and Part-B)			
	2. In Part-A, each question carries Two marks .			
	3. Answer ALL the questions in Part-A and Part-B			
	<u>PART-A</u> (Compulsory question)			
1. Ans	swer ALL the following short answer questions $(5 \times 2 = 10M)$)	со	BL
	compare type conversion methods in Python.	,		L2
b) V	/hat are formal parameters?		CO2	L1
	an a Python function return multiple values? If yes, how it wo	rks?	CO3	L1
	low will you define a Date ADT?		CO4	
	/rite short notes on expression trees.			 L1
- /	PART-B		000	
	Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 6$	0 Mark	s)	
		Marks	СО	BL
_				
2.	Define an Expression. Illustrate different operators in an			
	expression in Python, in the order of their precedence with	4014		
	examples.	12IVI	CO1	L2
	OR			
3. a)	What is a list? Summarize common list operations with	~~~		
	suitable examples.	81/1	CO1	L1
b)	Outline the list comprehensions in Python used to			
	generate sequences.	4IVI	CO1	L2
1 ->	UNIT-II	4014		
4. a)	Interpret parameter passing to a function in Python.		CO1	
b)	Define keyword arguments.	2M	CO1	L1
	OR			
5. a)	Discuss three fundamental features of object-oriented			
	programming.	4M	CO2	L3
b)	Design a Python code to call a class method from another	_		
	class method	8M	CO2	L3

		UNIT–III			
6.	a)	Evaluate operator overloading and method overloading			
		with suitable programs.	7M	CO3	L2
	b)	What are abstract classes? Give examples.	5M	CO3	L1
		OR			
7.		Analyze the importance of error and exception-handling			
		techniques in Python. Justify your answer.	12M	CO3	L4
		UNIT–IV			
8.		Construct a linked list with a neat diagram (choose any			
		random elements) and explain the following operations			
		with appropriate functions.			
		 i) Traversing the list ii) Creation of a new node 			
		ii) Creation of a new nodeiii) Removing a node			
		iv) Searching for a node	12M	CO4	L3
				007	
		OR			
9	a)	OR With a neat diagram, show the implementation of the stack			
9.	a)	With a neat diagram, show the implementation of the stack	10M	CO4	-
9.		With a neat diagram, show the implementation of the stack ADT for the following values. 7 13 45 19 28 -1	10M 2M		L3
9.	a) b)	With a neat diagram, show the implementation of the stack		CO4 CO4	-
		With a neat diagram, show the implementation of the stack ADT for the following values. 7 13 45 19 28 -1 List the applications of stack.			L3
	b)	With a neat diagram, show the implementation of the stack ADT for the following values. 7 13 45 19 28 -1 List the applications of stack.		CO4	L3
	b)	With a neat diagram, show the implementation of the stack ADT for the following values. 7 13 45 19 28 -1 List the applications of stack. UNIT-V What is a binary tree? Explain binary tree traversals with	2M 8M	CO4	L3 L1
	b) a)	With a neat diagram, show the implementation of the stack ADT for the following values. 7 13 45 19 28 -1 List the applications of stack. UNIT-V What is a binary tree? Explain binary tree traversals with appropriate examples and program code.	2M 8M	CO4 CO5	L3 L1 L5
10.	b) a) b)	With a neat diagram, show the implementation of the stack ADT for the following values. 7 13 45 19 28 -1 List the applications of stack. UNIT-V What is a binary tree? Explain binary tree traversals with appropriate examples and program code. Differentiate binary tree and binary search tree.	2M 8M	CO4 CO5	L3 L1 L5 L1
10.	b) a) b)	With a neat diagram, show the implementation of the stack ADT for the following values. 7 13 45 19 28 -1 List the applications of stack. UNIT-V What is a binary tree? Explain binary tree traversals with appropriate examples and program code. Differentiate binary tree and binary search tree. OR	2M 8M 4M	CO4 CO5	L3 L1 L5
10.	b) a) b) a)	With a neat diagram, show the implementation of the stack ADT for the following values. 7 13 45 19 28 -1 List the applications of stack. UNIT-V What is a binary tree? Explain binary tree traversals with appropriate examples and program code. Differentiate binary tree and binary search tree. OR Define a Heap. Construct a max heap for the following:	2M 8M 4M	CO4 CO5 CO5	L3 L1 L5 L1
10.	b) a) b) a)	With a neat diagram, show the implementation of the stack ADT for the following values. 7 13 45 19 28 -1 List the applications of stack. UNIT-V What is a binary tree? Explain binary tree traversals with appropriate examples and program code. Differentiate binary tree and binary search tree. OR Define a Heap. Construct a max heap for the following: {12, 15, 9, 8, 10, 18, 7, 20, 25}	2M 8M 4M 9M	CO4 CO5 CO5	L3 L1 L5 L1

.