| B.Tech. || Semester Regular Examinations July 2023

Engineering Drawing
 (Common to CSE, CSE(Al) and CSE(DS))

Max. Marks: 70

Time: 3 Hours
Answer five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. The major and minor axes of an ellipse are 120 mm and 80mm. Draw an ellipse by Concentric Circles method

14 M CO1 L2

OR

2. a) Using a compass and ruler, construct a square with a given side length 40mm.
b) Sketch an epicycloid with the radius of the rolling circle as 4 cm and the radius of the fixed circle as 12 cm .

4M CO1 L2

10M CO1 L2

UNIT-II

3. A line KL, 90 mm long, is inclined at an angle of 30 degrees to the horizontal reference plane and 60 degrees to the vertical reference plane. One end of the line is 15 mm above HP and 20mm in front of VP. Find the traces of line KL on the horizontal and vertical reference planes.

14M CO2
L3

OR

4. A 100 mm long line is parallel to and 40 mm above the H.P. Its two ends are 25 mm and 50 mm in front of the V.P respectively. Draw its projections and find its inclination with the V.P

4M CO2

UNIT-III

5. a) A square ABCD of 40 mm side has a corner on the H.P. and 20 mm in front of the V.P. All the sides of the square are equally inclined to the H.P. and parallel to the V.P. Draw its projections.

7M co3
b) A circular plate of diameter 50 mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections

7M CO3

OR

6. A regular pentagon of 25 mm side has one side on the ground and inclined at 30° to V.P. Its plane is inclined at 45° to the H.P. Draw its projections.

UNIT-IV

7. A hexagonal pyramid, base 30 mm side and axis 55 mm long, has an edge of its base on the ground. Its axis is inclined at 45° to the ground and parallels to the H.P. Draw its projections.

14M CO4

OR

8. A square prism, base 40 mm side and height 65 mm has its axis inclined at 45° to the HP and has an edge of its base, on the HP and inclined at 30° to the VP. Draw its Projections

14 M CO4 L3 UNIT-V
9. Draw the front view, top view and right side view for the following figure

OR
14 M Co5 L3
10. Draw the isometric view for the following figure

\square
Code: 20A324T-A
| B.Tech. || Semester Regular Examinations July 2023

Engineering Drawing
 (Computer Science and Engineering)

Max. Marks: 70
Answer five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Construct an ellipse using the concentric circles method with major and minor axes of lengths 7 cm and 5 cm , respectively.

OR

2. a) Construct a regular hexagon of side 40 mm by using general method.
b) Construct a cycloid of a circle 50 mm diameter which rolls on a straight line without slipping.

UNIT-II

3. a) A point A is on HP and 40 in front of V.P . Another point B is on VP and below H.P. The line joining their front views makes an angle of 45° with $x y$, while the line joining their top views makes an angle of 30°. Find the distance of the point B from H.P.
b) A line $A B 60 \mathrm{~mm}$ long is parallel to HP . The point P is 20 mm above HP and 35 mm in front of VP. The length of the front view is 50 mm . Determine its true inclination with VP.

OR

4. a) The top view of a 75 mm long line $A B$ measures 65 mm while the length of its front view is 50 mm . Its one end A is in the HP and 12 mm in front of VP. Draw the projections of $A B$ and determine its inclination with HP \& VP.
b) A line IJ is inclined at an angle of 30° to the horizontal reference plane and 45° to the vertical reference plane. The true length of line IJ is 120 mm . Find the projected length of line IJ on the horizontal reference plane.

UNIT-III
5. a) A thin $30^{\circ}-60^{\circ}$ set square has its longest edge in the VP and inclined at 30° to HP. Its surface makes an angle of 45° with the VP. Draw the projections.
b) Draw the projections of a circle of 50 mm diamete having its plane vertical and inclined at 30° to the V.P. Its centre is 30 mm above the H.P. and 20 mm in front of the V.P.

OR

6. a) A square $A B C O$ of 50 mm side has its corner A in the H.P., its diagonal $A C$ inclined at 30° to the H.P. and the diagonal BO inclined at 45° to the V.P. and parallel to the H.P. Draw its projections.

7M CO3
7. Draw the projections of a pentagonal prism, base 30 mm side and axis 50 mm long, resting on one of its rectangular faces on the H.P., with the axis inclined at 45° to the V.P.

OR

8. A hexagonal pyramid, base 25 mm side and axis 50 mm long, has an edge of its base on the ground. Its axis is inclined at 30° to the ground and parallels to the V.P. Draw its projections.

UNIT-V

9. Draw the isometric view for the following figure

14M CO5 L3
10. Draw the front view, top view and left side view for the following figure

14M CO5 L3

Code: 20A324T-D
| B.Tech. || Semester Regular \& Supplementary Examinations July 2023

Engineering Drawing

(Common to CSE, AI\&DS and AI\&ML)
Max. Marks: 70
Time: 3 Hours
Answer five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Construct a parabola when the distance between the focus and directrix is 50 mm . Also draw the tangent and normal to any point on the curve.

OR

2. Construct an epicycloid of a circle 60 mm diameter which rolls outside of another circle of 120 mm diameter for one revolution. Draw tangent and normal to any point on the curve.

UNIT-II

3. A line NS, 80 mm long has its end $\mathrm{N}, 10 \mathrm{~mm}$ above the HP and 15 mm in front of the VP. The other end S is 65 mm above the HP and 50 mm in front of the VP. Draw the projections of the line and find its true inclinations with the HP and VP.

OR

4. Draw the projections of the following points on the same ground line, keeping the projections 30 mm apart.
i. A, in the H.P \& 30 mm , behind the V.P
ii. $\quad B, 30 \mathrm{~mm}$ above the $H . P \& 15 \mathrm{~mm}$ in front of the V.P.
iii. C, in the V.P \& 50 mm above the H.P.
iv. D, 30 mm below the H.P \& 35 mm behind the V.P.
v. E, 25 mm above the H.P \& 65 mm behind the V.P.
vi. $\quad \mathrm{F}, 45 \mathrm{~mm}$ below the H.P \& 35 mm in front of the V.P.
vii. G, in both the H.P \& the V.P.

UNIT-III

5. A regular pentagon of 25 mm side has one side on the ground. Its plane is inclined at 45° to the HP and perpendicular to the VP. Draw its projections
6. A semi-circular lamina of 64 mm diameter has its straight edge in VP and inclined at an angle of 45° to HP. The surface of the lamina makes an angle of 30° with VP. Draw the projections

UNIT-IV

7. A hexagonal pyramid, base 25 mm side and axis 50 mm long, has an edge of its base on the ground. Its axis inclined 30° to the ground and parallel to the V.P. Draw its projections

OR
8. Draw the projections of a pentagonal prism, base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the H.P with the axis inclined 45° to the V.P.

UNIT-V
9. Draw the top view, front view and left side view for the object shown below.

OR
10. Draw the isometric view of hexagonal prism, with side of base 25 mm and axis 60 mm long. The prism is resting on its base on HP , with an edge of the base parallel to VP.
\square

Code: 20AC22T

| B.Tech. || Semester Regular \& Supplementary Examinations July 2023

Applied Physics

(Common to CSE, Al\&DS, $\operatorname{CSE}(\mathrm{Al})$ and $\operatorname{CSE}(\mathrm{DS})$)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer AlL the following short answer questions
a) List any four engineering applications of polarization. CO1 L1
b) Define Magnetic susceptibility. CO2 L1
c) What is critical angle of propagation in optical fibers? $\mathrm{CO3} \mathrm{~L} 1$
d) Write the Einstein's relation in semiconductor. CO4 L1
e) Write any two important properties of superconductors.

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Explain the phenomenon of interference of light due to thin parallel film and find the conditions for maxima and minima. 10 M CO1 L2
b) A parallel beam of light of wavelength $6000 \AA$ is incident on a glass plate of refractive index 1.5 such that the angle of refraction into the plate is 30°. Calculate the smallest thickness of the plate, which will make it appear dark by reflection.

2M CO1 L3

OR

3. Obtain the conditions for maxima and minima in Fraunhoffer diffraction due to single slit.

12M CO1 L4

UNIT-II

4. a) What is meant by polarization in dielectrics?

2M CO2 L1
b) Explain electronic polarizability in atoms and obtain an expression for electronic polarizability in terms of radius of the atoms.

10 M CO L2
OR
5. a) Explain hysteresis loop in detail.

8M CO2 L2
b) Classify the magnetic materials based on their hysteresis curve as soft and hard magnetic materials and mentioned their distinct characteristic features. 4M CO2 L4
UNIT-III
6. a) State and prove the Gauss's theorem for divergence. $6 \mathrm{M} \mathrm{CO3}$ L3
b) Derive the electromagnetic wave energy using Poynting's theorem. $6 \mathrm{M} \mathrm{co3}$ L3
OR
7. a) Derive an expression for acceptance angle and numerical aperture.b) Calculate the acceptance angle of a given optical fiber, if therefractive indices of core and cladding are 1.562 and 1.497respectively.2M CO3 L3
UNIT-IV
8. a) Explain classification of solids into conductors, semiconductors and insulators6M co4 L2
b) Derive the drift and diffusion current in semiconductors. $6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$
OR
9. a) State Hall effect and derive the value of Hall coefficient. 10M CO4 L3
b) Mention the applications of Hall effect.2M CO4 L1
UNIT-V10. a) What do you understand by Meissner's effect in superconductors?4M CO5 L1
b) Discuss the electron-phonon interaction and the formation of Cooper pairs in superconductors on the basis of the BCS theory. 8M CO5 L3
OR11. a) Explain the physical and chemical properties of nanomaterials.4M CO5 L2
b) Explain the synthesis of nano materials by ball milling. 8M CO5 L2
,,
| B.Tech. || Semester Regular \& Supplementary Examinations July 2023

Basic Electrical and Electronics Engineering (Common to CE, CSE, Al\&DS, CSE(Al) and CSE(DS))

Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) State and explain Kirchoff's Voltage Law. $1 \quad 2$
b) Write the necessity of commutator for operation of a D.C machine? 23
c) Write the principle of operation of transformer? 32
d) Draw the circuit diagram symbols for p-n-p and n-p-n transistors 4
e) How are moving coil instruments classified? $5 \quad 1$

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Two resistances when they are in series have an equivalent resistance of 9ohms and when connected in parallel have an equivalent resistance of 2ohms. Find the two resistances?

6M 1
b) What is the potential difference between X and Y in the network shown in Fig.1.

Fig. 1
6M 1

OR

3. a) Two resistors 4 ohms and 6 ohms are connected in parallel. If the current supplied by source is 30 A . Find the equivalent resistance and current through each branch.
b) A 35 V d.c supply is connected across a resistance of 600 ohms in series with an unknown resistance R. A voltmeter having a resistance 1200 ohms is connected across 600 ohms and shows a reading of 5 V . Calculate the value of resistance R .

UNIT-II

4. a) Derive the torque equation of a $D C$ motor?
b) A $1500 \mathrm{~kW}, 550 \mathrm{~V}$, 10 pole generator runs at $150 \mathrm{r} . \mathrm{p} . \mathrm{m}$. There are 2500 lap connected conductors and the full load copper losses are 25 KW . The air gap flux density has a uniform value of $0.9 \mathrm{wb} / \mathrm{m} 2$. Calculate the no load terminal voltage and the area of the pole shoe?

OR

5. a) Draw the circuit diagram of DC series generator and write the relations between voltages and currents? Write its applications.
b) Explain the Swinburne's test to determine the efficiency of a DC machine.

UNIT-III

6. a) Explain principle of operation of a 1 phase transformer?

6M $3 \quad 2$
b) Derive the expression for the regulation of a 1 phase transformer and discuss whether its value should be low or high to get the better efficiency?

OR

7. a) Explain in detail about the constructional features and operation of an alternator?
b) Draw and explain about the torque slip characteristics of an induction motor?

6M $3 \quad 2$

UNIT-IV

8. a) Explain about the principle of operation of a full wave rectifier with the help of circuit diagram?

6M 42
b) Explain in detail about the differences between PNP and NPN transistors?

6M 43

OR

9. a) Discuss about the differences between half wave rectifier and full wave rectifier by using the output waveforms?

6M $4 \quad 4$
b) Draw and explain the input and output characteristics for transistor CE configuration?

6M 43
UNIT-V

10. $\begin{array}{llll}\text { Draw the block diagram of a general purpose CRO and explain } \\ \text { the functions of various blocks }\end{array}$
$\begin{array}{llll}\text { OR }\end{array}$
Explain the working of MCB with neat diagram.

\square

Code: 20AC21T

| B.Tech. || Semester Regular \& Supplementary Examinations July 2023

Differential Equations and Vector Calculus

(Common to all Branches)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ CO BL
a) Find the particular integral of (\%) 1
b) Write the second order Legendre's Linear Equation form 23
c) Find the partial differential equations of $Z=a x+b y \quad 3 \quad 2$

e) State Stoke's Thorem $\quad 5$

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
Marks CO BL

UNIT-I

 12M 13
OR
3. Using variation of parameter to solve $\frac{\alpha^{2} y}{}+\quad{ }^{12 M}$ 12M 1

UNIT-II
 OR
5. An uncharged con ${ }_{d_{i}}{ }^{2 n}$ ser of caparity C is charged by applying an e. m.f $\frac{E s}{\sqrt{L C} t}$ througl' leads of self-inductance L and negligible resistance, prove that at any time t, the charge on one of the plates is $\frac{\tilde{Z}^{C} C}{-2}\left\{\sin \frac{t}{\sqrt{L C}}-\frac{t}{\overline{\overline{L C}}} \cos \frac{t}{\overline{\overline{L C}}}\right\} \quad 12 \mathrm{M} \quad 2$

UNIT-III

6. a) Form the partial differential equation by eliminating arbitrary functions f and g from $z=f(x+a t)+g(x-a t) \quad 6 \mathrm{M} \quad 3 \quad 3$

OR

7. Using the methoc

ORf va
solve $\frac{\partial u}{u}=2 \frac{\partial u}{\partial t}+{ }^{1}$ of $\mathbf{s}{ }^{!}$pal ration o $\mathrm{Va}_{\text {riables }}$
solve $\partial x=2: \partial t+u$ wherre $u(x, 0)=6 e^{-3 x}$
12M 3
8. a) Find the directional derivative of $=60$ the point (2,1,1) in the direction $f(x, y, z)=x y^{2}+y z^{3} a_{\mathrm{L}}^{t}$
b) $\begin{aligned} & \text { the } p_{0} \text { ant } \vec{r},-1 \\ & \text { Find the arigle }\end{aligned}$ $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$.

OR

9. OR :tor
Find constants a, b, c so that the $v e G_{-}+(4 \lambda$
$A=(x+2 y+a z) \bar{\imath}+(b x-3 y-z) j \bar{A}=\nabla \hat{i}+c y+2 z) \bar{k}$
12 M 4
UNIT-V
10. Verify Green's theorem for $\int_{c}^{\frac{0}{c}\left[\left(\frac{T}{c}-\mathbf{V}+y^{2}\right) d_{x}+x^{2} d y\right]}$ where C is bounded by $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}_{0}^{c}=x^{2}$

12M 5
3
OR
11. Verify Stoke's theorem for ${ }^{\text {and }} \mathrm{V}^{2}=$? around the rectangle bounde ${ }^{F}=$ by the tines $x= \pm _a, y=G_{1}, y=b$

Code: 20A521T
| B.Tech. || Semester Regular \& Supplementary Examinations July 2023

Data Structures through Python

(Common to CSE, AI\&DS, AI\&ML, CSE(AI) and CSE(DS))

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{Co} \quad \mathrm{BL}$
a) Compare type conversion methods in Python. CO1 L2
b) What are formal parameters? CO2 L1
c) Can a Python function return multiple values? If yes, how it works? CO3 L1
d) How will you define a Date ADT? CO4 L2
e) Write short notes on expression trees. CO5 L1

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL

UNIT-I

2. Define an Expression. Illustrate different operators in an expression in Python, in the order of their precedence with examples.

12M CO1

OR

3. a) What is a list? Summarize common list operations with
suitable examples.
b) Outline the list comprehensions in Python used to generate sequences.

4M CO1 L2

UNIT-II

$\begin{array}{lrlll}\text { 4. a) Interpret parameter passing to a function in Python. } & 10 \mathrm{M} & \mathrm{CO} 1 & \mathrm{~L} 2 \\ \text { b) Define keyword arguments. } & 2 \mathrm{M} & \mathrm{CO} 1 & \mathrm{~L} 1\end{array}$

OR

5. a) Discuss three fundamental features of object-oriented
programming.
[^0]
UNIT-III

6. a) Evaluate operator overloading and method overloading with suitable programs.

7M CO3
L2
b) What are abstract classes? Give examples.

5M CO3

OR

7. Analyze the importance of error and exception-handling techniques in Python. Justify your answer.

12M CO3 L4
UNIT-IV
8. Construct a linked list with a neat diagram (choose any random elements) and explain the following operations with appropriate functions.
i) Traversing the list
ii) Creation of a new node
iii) Removing a node
iv) Searching for a node

12M CO4 L3

OR

9. a) With a neat diagram, show the implementation of the stack ADT for the following values. 713451928 -1

10M CO4 L3
b) List the applications of stack. $2 \mathrm{M} \mathrm{CO4} \quad \mathrm{L1}$

UNIT-V

10. a) What is a binary tree? Explain binary tree traversals with appropriate examples and program code.

8M Co5
L5
b) Differentiate binary tree and binary search tree.

4M cos

OR

11. a) Define a Heap. Construct a max heap for the following: $\{12,15,9,8,10,18,7,20,25\}$

9M CO5 L3
b) How will you remove an interior node with two children in a binary search tree?

3M CO5 L1 *** End ${ }^{* * *}$

[^0]: b) Design a Python code to call a class method from another class method

 8M CO2 L3

