Code: 20AC22T

| B.Tech. || Semester Regular \& Supplementary Examinations September 2022

Applied Physics

(Common to CSE and AI\&DS)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions (5 X $2=10 \mathrm{M}$) CO Blooms
a) Distinguish between Fresnel and Fraunhofer diffractions. 1 L1
b) Write any two applications of dielectrics. L1
c) State Stoke's theorem for curl. L1
d) What is indirect band gap semiconductor? Give one example. L1
e) Write any two applications of nanomaterials. L1
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

$$
\text { Marks CO } \begin{gathered}
\text { Blooms } \\
\text { Level }
\end{gathered}
$$

UNIT-I

2. a) State the basic conditions required for the phenomenon of interference of light. 4M co1 L1
b) Derive an expression for wavelength of light in Newton's rings experiment. 8M CO1 L3
OR
3. a) Give the differences between interference and diffraction. 4M CO1 L1
b) Discuss the Fraunhofer diffraction at single slit. Obtain the conditions for principal maximum and minimum. 8M CO1 L3
UNIT-II
4. a) What are different types of polarization in dielectrics? 4M CO2 L1
b) Explain ionic polarizability and derive an expression for ionic polarizability. 8 M CO 2 L2
OR
5. a) Derive the relation between magnetic susceptibility andpermeability.4M CO2L3
b) Explain ferromagnetic hysteresis on the basis of domains.

UNIT-III

6. a) If $:\left(3 x^{2}-3 y z\right) i+\left(3 y^{2}-3 z x\right) j+\left(3 z^{2}-3 x y\right) k$ then find curl ${ }^{17}$
b) State Poynting theorem. Explain how the Poynting vector
b) State Poynting theorem.
explains the energy flow.
3M CO3
9M CO3
L2

OR

7. a) Mention few applications of optical fibre.
$4 \mathrm{M} \mathrm{CO3}$
b) Define acceptance angle and acceptance cone. Derive an expression for acceptance angle in terms of refractive indices of the core and the cladding.

8M CO3

UNIT-IV

8. a) How does the Fermi level change with temperature in ptype and n-type semiconductors?

4M CO4 L2
b) Derive an expression for density of electrons in intrinsic semiconductors.

OR

9. a) Distinguish between p-type and n-type semiconductors.
b) Explain Hall effect and its importance. Derive the relation between Hall coefficient and Hall voltage.

8M CO4 L2

UNIT-V

10. a) Explain A.C Josephson effect.
b) What is super conductivity? Explain Meissner effect.

4M CO5 L2 Describe type- I and type -II superconductors.

8M CO5 L2

OR

11. a) Write some mechanical and optical properties of nanomaterials.

4M cos
b) Explain chemical vapor deposition method of synthesis of nanomaterials with diagram.

8M Co5
L2

Hall Ticket Number :

R-20

Code: 20A223T
| B.Tech. || Semester Regular \& Supplementary Examinations September 2022 Basic Electrical and Electronics Engineering
(Common to CE, CSE and AI\&DS)
Time: 3 Hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$
a) State Fleming's left hand rule? 1
b) Write the applications of DC generators? 2
c) Does the transformer draw any current when its secondary is open
circuited?
d) Write the symbol of PNP transistor. 4
e) What is the importance of earthing? 5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) What is Fleming's right hand rule and how it used to determine the direction of force in DC Generator. 6M 1
b) State Kirchhoff's laws and explain with an example?

6M 1

OR

3. a) A color TV has a current of 1.99 A when connected to a 230 V household circuit. What is the resistance in ohms of the TV set?
b) Discuss Faraday's laws of electromagnetic induction?

8M 1

UNIT-II

$\begin{array}{llll}\text { 4. a) Draw and explain the different types of generators? } & 8 \mathrm{M} & 2 & 2 \\ \text { b) Explain the principle of operation of } D C \text { generator? } & 4 \mathrm{M} & 2 & 2\end{array}$
OR
5. a) Derive the Torque equation of DC motor?

6M 2
2
b) A DC generator supplies a load of 9 kW at 220 V . Calculate the induced e.m.f if the armature resistance is 0.8 ohms and the field resistance is 70 ohms?

6M 2

UNIT-III

6. a) Derive the EMF equation of transformer?

8M 3
b) Explain the principle of operation of Alternator?

4M 3
7. Explain the OC and SC test of transformer with necessary diagrams?

12M 3

UNIT-IV

8. a) Draw and explain V-I characteristics of diode?
b) Explain the operation of diode half-wave rectifier?
OR diode in Common Emitter configuration

12M 4

UNIT-V

10. a) Discuss the types of wires and cables? $6 \mathrm{M} \quad 5 \quad 2$
b) Draw and explain the block diagram of CRO?

6M 5
2
OR
11. a) Discuss the operation of MCB?

6M 5
2
b) Explain the operation of function generator?

6M 5
2

$:$										

R-20

Code: 20AC21T
| B.Tech. || Semester Regular \& Supplementary Examinations September 2022

Differential Equations and Vector Calculus

(Common to all Branches)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$
a) Solve $\frac{d^{4} x}{d t^{4}}+4 x=0$
b) Write the second order Legendre's Linear equation form.
c) Form the differential equation by eliminating a and b from $\log (a z-1)=x+a y+b$.
d) Find the greatest value of the directional derivative of the function $\mathrm{f}=\mathrm{x}^{2} \mathrm{yz}^{3}$ at $(2,1,-1)$.
e) State stokes theorem.

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. Solve $(D-2)^{2}=8\left(e^{2 x}+\sin 2 x+x^{2}\right)$

OR

3. Solve the differential equation $\left(D^{2}+4\right) y=\sec 2 x$ by the method of variation of parameters.

12M CO1

UNIT-II

4. A condenser of capacity C discharged through an inductance L and resistance R in series and the charge q at time t satisfies the equation $\mathrm{L} \frac{\mathrm{d}^{2} \mathrm{q}}{\mathrm{dt}^{2}}+\mathrm{R} \frac{\mathrm{dq}}{\mathrm{dt}}+\frac{\mathrm{q}}{\mathrm{C}}=0$. Given that $L=0.25$ henries, $R=250$ ohms, $C=2 \times 10^{-6}$ farads, and that when $t=0$, charge q is 0.002 coulombs and the current $\mathrm{dq} / \mathrm{dt}=0$, obtain the value of q in terms of t .
5. Solve $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=\log x \cdot \sin (\log x)$

UNIT-III

6. a) Form a partial differential equation by eliminating the arbitrary functions $f(x)$ and $g(y)$ from $z=y f(x)+x g(y)$.

6M CO3
b) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$.

OR

7. Solve by the method of separation of variables $3 \mathrm{u}_{\mathrm{x}}+2 \mathrm{u}_{\mathrm{y}}=0$ where $\mathrm{u}(\mathrm{x}, 0)=4 \mathrm{e}^{-\mathrm{x}}$.

12M CO3

UNIT-IV

8. a) Find the directional derivative of $\phi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction of the vector $2 \overline{\mathrm{i}}-\overline{\mathrm{j}}-2 \overline{\mathrm{k}}$.

6M CO4
b) Show that $\nabla^{2}\left(r^{n}\right)=n(n+1) r^{n-2}$.

6M co4

OR

9. a) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$.

6M CO4
b) Find whether the function

$$
\overline{\mathrm{F}}=\left(\mathrm{x}^{2}-\mathrm{y}^{3}\right) \overline{\mathrm{i}}+\left(\mathrm{y}^{2}-3 \mathrm{x}\right) \overline{\mathrm{j}}+\left(\mathrm{z}^{2}-\mathrm{xy}\right) \overline{\mathrm{k}}
$$

is irrotational and hence find scalar potential function corresponding to it.
$6 \mathrm{M} \mathrm{CO4}$

UNIT-V

10. a) Find the work done in moving a particle in the force field $\overline{\mathrm{F}}=3 \mathrm{x}^{2} \overline{\mathrm{i}}+(2 \mathrm{xz}-\mathrm{y}) \overline{\mathrm{j}}+\mathrm{z} \overline{\mathrm{k}}$ along the straight line from $(0,0,0)$ to $(2,1,3)$

6 M cos
b) Apply Divergence theorem to evaluate
$\iint_{\mathrm{s}}(x+z) d y d z+(y+z) d z d x+(x+y) d x d y$
where s is the surface of the sphere $x^{2}+y^{2}+z^{2}=4$.
6M cos

OR

11. Verify Green's theorem in the plane for $\int_{c}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y$ where c is a square with vertices $(0,0),(2,0),(2,2),(0,2)$.
\square
Code: 20A521T
R-20
| B.Tech. || Semester Regular \& Supplementary Examinations September 2022
Data Structures through Python
(Common to CSE, Al\&DS and AI\&ML)
Time: 3 Hours
Max. Marks: 70*********
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
12. In Part-A, each question carries Two mark.
13. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)
14. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO
a) Write a Python program to find the sum of all items in the dictionary. CO1
b) How memory management is done in Python? CO2
c) What is Encapsulation in Python? Give Example. CO3
d) List out the differences between Set and Dictionary? CO4
e) List out different Kinds of Tree Traversals for a Binary Search Tree. CO5
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Given the marks of ten students $10,20,25,34,11,33$, $44,67,79,81$. Write a python program to identify the odd and even numbers and place it in separate lists.
8M CO1

b) Write a Python program to find transpose matrix of a
given matrix of size $\mathrm{n} \times \mathrm{n}$.

OR

3. a) Explain about operations on Sets in Python.
6M CO1
b) Explain about operations on Dictionary in Python.
6M CO1

UNIT-II

4. a) Discuss various string handling methods in Python.
6M CO2 L1
b) Write a Python function that prints all prime numbers from 1 to 100.

OR

5. a) Discuss about fundamental features of Object oriented programming.
6M CO2
b) Explain the procedure of calling a class method from another class method in python with an example.
6M CO2 L1

UNIT-III

6. Explain Ploymorphism in Python with an example.
OR
7. a) Write a Python program to create a user-defined exception that will check whether the person is eligible or not.
Note:- The person eligibility for voting is 21 years.
b) Discuss various built-in exceptions in Python with an example.

8M CO3

4M CO3 L5

UNIT-IV

8. Describe the concept of Queues and its implementation using linked list in Python.

12M CO4 L2

OR

9. Describe the procedure of how to traverse, search and remove a node in a single linked list.

12M CO4 L6

UNIT-V

10. Describe the priority queues and its operations in Python.
OR
11. a) Briefly explain about iterators in Trees. 4M cos L6
b) Write a program to calculate the height of a binary tree in python.

8M CO5 L3
\square
Code: 20A324T-C
| B.Tech. || Semester Regular \& Supplementary Examinations September 2022

Engineering Drawing

(Common to CSE and AI\&DS)
Max. Marks: 70
Time: 3 Hours
Answer five questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Construct an ellipse by concentric circle method whose major axis is 90 mm and minor axis is 55 mm .
b) Construct an ellipse whose major and minor axes are 100 mm and 60 mm respectively by oblong method.

OR

2. A circle of 40 mm diameter rolls along a straight line without slipping. Draw the curve traced out by a point ' P ' on the circumference for one revolution of the circle. Draw a tangent and normal at a point on it 35 mm from the line.

UNIT-II

3. a) A line AB 50 mm long makes an angle 45° to the V.P. The end A is 15 mm in front of V.P and 12 mm above the H.P. Draw the front view and top view of the line $A B$.
b) A line MN 50 mm long is parallel to V.P and inclined at 30° to H.P. The end M is 20 mm above H.P and 10 mm in front of V.P. Draw the projections of the line.

OR

4. A line CD 80 mm long is inclined at an angle of 30° to H.P and 45° to V.P. the point C is 20 mm above H.P and 30 mm in front of V.P. Draw the projections of the straight line.

UNIT-III

5. a) A hexagonal lamina of 40 mm side is resting on one of its corner on H.P. Its plane is inclined at an angle of 30° to H.P and perpendicular to V.P. Draw its projections.
b) Draw the projections of a circular lamina of 50 mm diameter, whose center is 30 mm above the H.P and 20 mm in front of V.P. The circular lamina is inclined at an angle of 30° to V.P and perpendicular to H.P.

OR

6. Draw the projection of a circular lamina of 80 mm diameter having one end A of the diameter on H.P and the other end B is in the V.P. The surface of the circle is inclined at 30° to H.P and 60° to V.P.

UNIT-IV

7. A pentagonal pyramid side of base 25 mm and axis 50 mm long is resting on an edge of its base on the H.P with its axis inclined at 30° to the HP and parallel to V.P. Draw its projections.

OR

8. Draw the projections of a cylinder of base 30 mm diameter
and axis 40 mm long, resting with a point of its base circle on H.P such that the axis is making an angle of 30° with the H.P.

$$
14 \mathrm{M} \mathrm{C4}
$$

UNIT-V

9. Draw the (i) Front view (ii) Top View (iii) Side view of the Following Isometric Drawings

All dimensions are in 'mm'
14 M C5

OR

10. Draw the isometric view of an object, whose orthographic projections are shown below.

All dimensions are in 'mm'

Hall Ticket Number:										

Code: 20A324T-B
| B.Tech. || Semester Regular \& Supplementary Examinations September 2022 Engineering Drawing
(Computer Science and Engineering)

Answer five questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO

UNIT-I

1. Construct an ellipse when the distance between the focus and the directrix is 30 mm and eccentricity is $3 / 4$. Draw a tangent and a normal on any point on the ellipse.

OR

2. Draw an epicycloid of rolling circle 40 mm diameter, which rolls outside another circle (base circle) of 150 mm diameter for one revolution. Draw a tangent and normal at any point on the curve.
$14 \mathrm{M} \mathrm{C1}$
3. a) A line EF 40 mm long is in V.P. and inclined to H.P. The top view measures 30 mm . The end E is 10 mm above H.P. Draw the projections of the line. Determine its inclination with H.P.
b) A line GH 45 mm long is in H.P. and inclined to V.P. The end G is 15 mm in front of V.P. The length of the front view is 35 mm . Draw the projections of the line. Determine its inclination with V.P

7M C2

OR

4. A line $L M 70 \mathrm{~mm}$ long has its end $L 10 \mathrm{~mm}$ above H.P and 15 mm in front of V.P. Its top view and front view measures 60 mm and 40 mm respectively. Draw the projections of the line and determine its inclinations with H.P and V.P.

UNIT-III

5. a) A regular pentagonal plane of 25 mm side, has one side on the H,P. Its plane is inclined at an angle of 30° to the H.P. and perpendicular to the V.P. Draw the projections of the pentagon.
b) An equilateral triangle of 30 mm side has a corner in V.P and 20 mm above the H.P. Draw the projections when the plane is parallel to the H.P and one of its side is inclined at 45° to the V.P.

OR

6. A semicircular plate of 80 mm diameter has its straight edge in the VP \& inclined at 45° to the HP. The surface of the plate makes an angle of 30° with the VP. Draw its projections.

UNIT-IV

7. A hexagonal pyramid of side of base 30 mm and axis 60 mm long is resting on edge of its base on the H.P with its axis inclined at 30° to H.P and parallel to V.P. Draw its projections.

OR

8. A pentagonal Prism side of base 25 mm and axis 60 mm long
lies with one of its rectangular faces on the H.P such that the axis is inclined at 45 to the V.P. Draw is projections.
$14 \mathrm{M} \mathrm{C4}$

UNIT-V

9. Draw the (i) Front view (ii) Top View (iii) Side view of the Following Isometric Drawing.

All dimensions are in 'mm'
10. Draw the isometric view of an object, whose orthographic projections are shown below

All dimensions are in 'mm'

