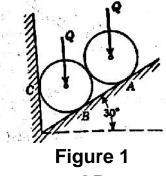
| Hall Ticket Number :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| R-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |    |
| Code: 23AHS21T<br>B.Tech. II Semester Regular Examinations July 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |    |
| Differential Equations and Vector Calculus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |    |
| (Common to All Branches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |    |
| Max. Marks: 70 Time: 3 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OUIS |    |
| Note: 1. Question Paper consists of two parts (Part-A and Part-B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |    |
| <ol> <li>In Part-A, each question carries Two marks.</li> <li>Answer ALL the questions in Part-A and Part-B</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |    |
| PART-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |    |
| (Compulsory question)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~~   | Ξ. |
| 1. Answer <b>all</b> the following short answer questions (10 X 2 = 20M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO   | BL |
| a) Solve $(2^r \text{ the follow})_{ag}$ short answer c<br>dx + (x + 2y + 1) = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO1  | L3 |
| b) State Newton's Law of Cooling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO1  | L1 |
| c) Solve $\begin{pmatrix} z & z & z & z & z & z & z & z & z & z $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO2  | L3 |
| d) Find Pl of $\binom{D^2 + 4D}{D^2 + 5D} = 0$<br>e) Find Pl of $\binom{D^2 + 5D}{D^2 + 5D} = 0$<br>h) Find Phe $(\frac{D^2 + 5D}{D^2 + 5D} + 6)y = \frac{3x}{2}$<br>h) hy eliminating arbitrary constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO2  | L3 |
| Form the partial differential equatic<br>$a, b$ from $z = ax + by + a^2 + b^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO3  | L3 |
| f) Solve $\int_{p}^{p} \sqrt{\frac{p}{z} = \frac{d}{ax} + \frac{by}{y} + \frac{a^2}{a^2}} \sqrt{\frac{p}{x} + q} \sqrt{y} = \sqrt{z}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO3  | L3 |
| g) Find grad f, where $f = \sqrt{z}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO4  | L1 |
| h) Show that $f_{IB}$ solenoidal, where $f_{IB}^{2z} + 3_{y2z2} + 3_{x2z2} + 3_{x2z2} + 3_{x2y2} + 3_{x2y2} + 3_{y2z2} +$                                                                                                                                                                                                                                                                                                                                                                                    | CO4  | L1 |
| i) Evaluate the line integral $\int_{-\infty}^{\infty} (\frac{\ker^{2z} + x_{2}z^{2}\hat{i} + z_{2}z^{2}\hat{j} + z_$ | CO5  | L3 |
| j) State Green's theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO5  | L1 |
| PART-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |    |
| Answer <i>five</i> questions by choosing one question from each unit ( 5 x 10 = 50 Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | is)  |    |
| Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO   | BL |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |    |
| ÚNIT-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO1  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO1  | L3 |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |
| 3. a) Solve $xy(1 + xy^2) \frac{dy}{dx} = 1$ 5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO1  | L3 |
| 3. a) Solve $\frac{(4xy + 3y)}{xy(1 + xy^2)\frac{dy}{dx} = 1}$<br>b) If the temperat $\frac{y^2}{dy}\frac{dy}{dx} = t_{he}$ air i $30_{o}$ the substance cools from $100_{o}$ re of $70^{o}C$ in $\frac{s}{15}$ minutes. Find when the temperature will be $40^{o}C$ . 5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |    |
| cools from $100_{C}^{\text{ore of } 70^{\circ}C}$ in s minutes. Find when the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |
| temperature will be $40^{0C}$ . 5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO1  | L3 |

|     |    | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 23AHS | 521T       |    |
|-----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|----|
| 4.  |    | Solve $\binom{D}{D - 2D^2y} = e^{\binom{D}{e^{2x} + sin^2x + x}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10M     | CO2        | L3 |
| 5.  |    | Solve t<br>he simultaneous equations $\frac{q_x}{q_t} + 2y + s_{int} = 0$ ,<br>$\frac{dy}{dt} - 2_x - cost = 0$ , given that $x = 0$ and $y = 1$ when $t = 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10M     | CO2        | L3 |
| 6.  | a) | UNIT-III<br>F <sub>brm t</sub> he <sub>bartial</sub> diff <sub>e</sub> ren <sub>iti</sub> al equation by eliminating<br>arbitrary constants <i>a, b</i> and <i>c</i> from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |            |    |
|     |    | $\binom{x-a}{2} + \binom{y-b}{2} + \frac{z}{c} = \frac{c}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5M      | CO3        | L3 |
|     | D) | Form the partial differential equation by eliminating arbitrary functions <i>f</i> and <i>g</i> from $z = f(y + 2x) + g(y - 3x)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5M      | CO3        | L3 |
| 7.  |    | Solve $\begin{pmatrix} y & z \\ x^2 & y^2 \end{pmatrix} p + \begin{pmatrix} y^2 & y^2 \end{pmatrix} = z^2 - xy$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10M     | CO3        | L3 |
| 8.  |    | UNIT-IV<br>If $F = \nabla(x^3 + y^3 + z^3) = 3_{xyz}$ find curl( $F$ ).<br>Find the directional derivative of $\frac{T-IV}{Id \ c \  T _2F}$ .<br>(1,-2,-1) in the direction of the vector $2i$ -j-2k.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | CO4<br>CO4 |    |
|     |    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            | -  |
| 9.  | a) | between the surfaces $\sum_{x=x^2+y^2-13}^{2^{1-j-2}k} = 6 \text{ and}$<br>Find the angle $z = x^2 + y^2 - 13$ at (2,1,2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5M      | CO4        | L3 |
|     | 0) | $F_{nd the \ \ s o}^{= x^{2} + i} alu( \stackrel{13}{=} f a, b, c  f a, $ | 5M      | CO4        | L3 |
| 10. |    | <b>UNIT-V</b><br>Find the work down by a force $\frac{ \mathbf{N} \mathbf{T}-\mathbf{V} ^2}{ \mathbf{F} ^2}$ (2<br>along the straight line from $(0, 6, 0)$ to $(2, 1, 3)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |            |    |
| 11. |    | Verify reen's the Gi sorem for $\int_C (xy + \frac{2}{y^2}) dx + x^2 dy$ ,<br>where <i>c</i> is bounded by $y = x$ and $y = x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10M     | CO5        | L3 |

| Hall Ticket Number :                                                                     |               |    |
|------------------------------------------------------------------------------------------|---------------|----|
| Code: 23A0323T                                                                           | R-23          |    |
| B.Tech. II Semester Regular Examinations July 2024                                       |               |    |
| Engineering Mechanics                                                                    |               |    |
| (Common to CE & ME)                                                                      |               |    |
| Max. Marks: 70                                                                           | Time: 3 Hours |    |
| Note: 1. Question Paper consists of two parts (Part-A and Part-B)                        |               |    |
| 2. In Part-A, each question carries <b>Two marks.</b>                                    |               |    |
| 3. Answer <b>ALL</b> the questions in <b>Part-A</b> and <b>Part-B</b>                    |               |    |
| <u>PART-A</u><br>( Compulsory question )                                                 |               |    |
| 1. Answer <b>all</b> the following short answer questions $(10 \times 2 = 20 \text{ M})$ | CO            | BL |
| a) What are the characteristics of a force?                                              | 1             | L1 |
| b) What do you mean by free body diagram and redundant suppo                             | ort? 1        | L1 |
| c) Define angle of friction and cone of friction.                                        | 2             | L1 |
| d) What are the assumptions in the analysis of plane trusses?                            | 2             | L2 |
| e) Differentiate centroid and center of gravity.                                         | 3             | L2 |
| f) State perpendicular axis theorem applicable to area moment of                         | f inertia. 3  | L1 |
| g) What is the difference between rectilinear and curvilinear trans                      | lations? 4    | L2 |
| h) Define range and maximum height of a projectile.                                      | 4             | L1 |
| i) Define impulse and momentum.                                                          | 5             | L1 |
| j) What is virtual work? State virtual work principle.                                   | 5             | L1 |


#### PART-B

### Answer five questions by choosing one question from each unit ( 5 x 10 = 50 Marks )

Marks CO BL

## UNIT-I

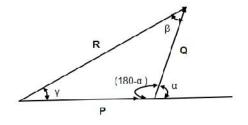
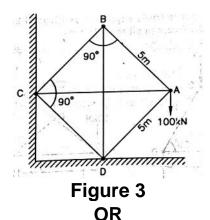
 Two identical rollers, each of weight Q = 100 N, are supported by an inclined plane and a vertical wall as shown in Figure 1. Assuming smooth surfaces, find the reactions induced at the points of support A, B and C.

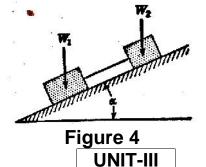


OR

10M 1 L3

3. Two forces of magnitude 250 N and 190 N are acting at a point O as shown in figure. If the angle between the forces is 60<sup>0</sup>, determine the magnitude of the resultant force. Also determine the angle and as shown in figure.1.

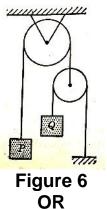


Fig.1 UNIT-II

- 10 1 L3
- 4. Find the forces in all the 8 members of the truss shown in Figure 3.



10M 2 L3

5. Two blocks of weights  $W_1$  and  $W_2$  rest on a rough inclined plane and are connected by a short piece of string as shown in Figure 4. If the coefficients of friction are  $\mu_1 = 0.2$  and  $\mu_2=0.3$ , respectively, find the angle of inclination of the plane for which sliding will impend. Assume  $W_1 = W_2 = 20$  N.




10M 2 L3

6. Find the center of gravity of I-Section show in.



|       | OR                                                                                                                                 |     |      |
|-------|------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 7.    | Derive an expression for the moment of inertia of a right circular cone of uniform density, radius of base <i>a</i> , and altitude |     |      |
|       | <i>h</i> , with respect to its geometric axis.                                                                                     | 10M | 3 L2 |
|       | UNIT-IV                                                                                                                            |     |      |
| 8. a) | Explain about kinematics of rectilinear translation.                                                                               | 4M  | 4 L2 |
| b)    | A ship while being launched slips down the skids with uniform                                                                      |     |      |
|       | acceleration. If 10 sec is required to traverse the first 4.9 m,                                                                   |     |      |
|       | what time will be required to slide the total distance of 122 m?                                                                   |     |      |
|       | With what velocity will the ship strike the water?                                                                                 | 6M  | 4 L3 |
| •     | OR                                                                                                                                 |     |      |
| 9. a) |                                                                                                                                    | 4M  | 4 L2 |
| b)    | The armature of an electric motor has angular speed                                                                                |     |      |
|       | N=1800rpm at the instant when the power is cut off. If it comes                                                                    |     |      |
|       | to rest in 6 seconds,                                                                                                              |     |      |
|       | <ul> <li>(i) Calculate the angular deceleration assuming that it is<br/>constant.</li> </ul>                                       |     |      |
|       | (ii) How many complete revolutions does the armature make                                                                          |     |      |
|       | during this period?                                                                                                                | 6M  | 4 L3 |
|       | UNIT-V                                                                                                                             |     |      |
| 10.   | Neglecting friction and inertia of the two pulleys shown in                                                                        |     |      |
|       | Figure 6 find the acceleration a of the weight Q, assuming that $P = Q$ .                                                          |     |      |
|       |                                                                                                                                    |     |      |



10M 5 L3

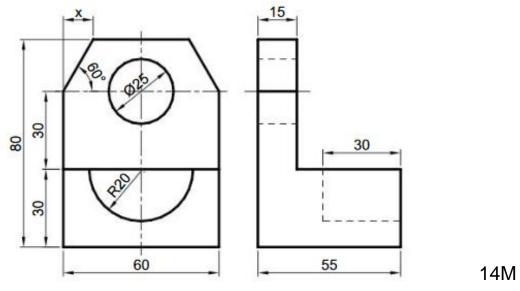
5 L3

11. A body of weight 8 N is suspended by a light rope wound round a pulley of weight 60 N and radius 30 cm. The other end of rope is fixed to the periphery of the pulley. If the weight is moving downwards, calculate for the acceleration of 8 N weight and tension in the string. 10M

\*\*\* End \*\*\*

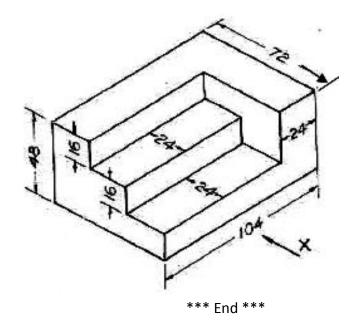
|    | Hall Ticket Number :                                                                                                    |                 |        |   |
|----|-------------------------------------------------------------------------------------------------------------------------|-----------------|--------|---|
|    | Code: 23A0322T-C                                                                                                        | R-23            |        |   |
|    | B.Tech. II Semester Regular Examinations July 2024                                                                      |                 |        |   |
|    | Engineering Graphics                                                                                                    |                 |        |   |
|    | (Common to CE, ME and AI&ML)<br>Max. Marks: 70                                                                          | ne: 3 Ho        | 21 Irs |   |
|    | *****                                                                                                                   |                 | 5015   |   |
|    | Answer <i>five</i> questions by choosing one question from each unit ( $5 \times 14 = 70$                               | Marks)<br>Marks | CO     | E |
|    | UNIT-I                                                                                                                  | Marks           | 00     | L |
| 1. | Draw an involute of a hexagon of side 25 mm. Draw the tangent                                                           |                 |        |   |
|    | and normal at any point on the involute.                                                                                | 14M             | 1      |   |
| 0  | OR                                                                                                                      |                 |        |   |
| 2. | A line of 1 centimeter represents an actual length of 4 dm. Draw a plain scale and mark a distance of 6.7 m on it.      | 14M             | 1      |   |
|    |                                                                                                                         | 1 1101          | 1      |   |
| 3. | Draw the projections of the following points on a common                                                                |                 |        |   |
|    | reference line keeping the distance between their projectors                                                            |                 |        |   |
|    | 30mm apart.<br>(a) Point P is 35 mm below the H.P. and in the V.P.                                                      |                 |        |   |
|    | (b) Point Q is 40 mm in front of the V.P. and 25 mm below the H.P.                                                      |                 |        |   |
|    | (c) Point R is 45 mm above the H.P. and 20 mm behind the V.P.                                                           |                 |        |   |
|    | (d) Point S is 30 mm below the H.P. and 45 mm behind the V.P.                                                           |                 |        |   |
|    | (e) Point T is both in H.P. and V.P.                                                                                    |                 |        |   |
|    | (f) Point U is 40 mm above the H.P. and on V.P.<br>(g) Point V is 20 mm behind the V.P. and on H.P.                     | 14M             | 2      |   |
|    | (g) Found vis 20 min behind the v.F. and on H.F.<br>OR                                                                  | 14111           | Ζ      |   |
| 4. | A 70 mm long line PQ, has its end P 20 mm above the H.P.                                                                |                 |        |   |
|    | and 30 mm in front of the V.P. The line is inclined at 45° to the                                                       |                 |        |   |
|    | H.P. and 30° to the V.P. Draw its projections.                                                                          | 14M             | 2      |   |
| 5. | <b>UNIT-III</b><br>A hexagonal plane of side 30 mm has an edge on the H.P. Its                                          |                 |        |   |
| 5. | surface is inclined at 45° to the H.P. and the edge on which the                                                        |                 |        |   |
|    | plane rests is inclined at 30° to the V.P. Draw its projections.                                                        | 14M             | 3      |   |
|    | OR                                                                                                                      |                 |        |   |
| 6. | A cylinder of base diameter 50 mm and axis 70 mm has a                                                                  |                 |        |   |
|    | generator in the V.P. and inclined at 45° to the H.P. Draw its projections.                                             | 14M             | 3      |   |
|    | UNIT-IV                                                                                                                 |                 | Ũ      |   |
| 7. | A pentagonal pyramid of base side 30 mm and axis 60 mm is                                                               |                 |        |   |
|    | resting on its base in the H.P. with an edge of the base parallel                                                       |                 |        |   |
|    | to the V.P. A horizontal section plane cuts the pyramid bisecting the axis. Draw its front view and sectional top view. | 14M             | 4      |   |
|    |                                                                                                                         |                 | т      |   |

8. A cone of base diameter 50 mm and axis 60 mm is resting on its base on the H.P. A section plane perpendicular to V.P. and inclined at 45° to H.P., bisects the axis of the cone. Draw the development of its lateral surface.


14M 4 3

5

3


## UNIT-V

9. The front and side views of an object are shown in Fig. Draw its isometric view.



OR

10. Draw the front view, top view and side view to the following isometric view



14M CO5 L3

| Hall Ticket Number :                                                                              |       |    |
|---------------------------------------------------------------------------------------------------|-------|----|
| Code: 23AHS25T                                                                                    | 3     |    |
| B.Tech. II Semester Regular Examinations July 2024                                                |       |    |
| Engineering Physics                                                                               |       |    |
| (Common to CE, ME, CSE, CSE(DS) and AI&ML)                                                        |       |    |
| Max. Marks: 70 Time: 3                                                                            | Hours |    |
| Note: 1. Question Paper consists of two parts (Part-A and Part-B)                                 |       |    |
| 2. In Part-A, each question carries <b>Two marks.</b>                                             |       |    |
| 3. Answer ALL the questions in Part-A and Part-B<br>PART-A                                        |       |    |
| ( Compulsory question )                                                                           |       |    |
| 1. Answer <b>all</b> the following short answer questions $(10 \times 2 = 20 \text{ M})$          | СО    | BL |
| a) Define interference and diffraction.                                                           | CO1   | L1 |
| b) What is resolving power of grating?                                                            | CO1   | L2 |
| <ul> <li>c) Define the terms lattice and basis.</li> </ul>                                        | CO2   | L1 |
| d) What are miller indices?                                                                       | CO2   | L2 |
| e) Write the relation between relative permittivity and susceptibility.                           | CO3   | L4 |
| <li>f) Define the terms Magnetic permeability and susceptibility.</li>                            | CO3   | L1 |
| g) What are matter waves?                                                                         | CO4   | L1 |
| h) State Heisenberg uncertainity principle.                                                       | CO4   | L1 |
| i) What is Hall effect?                                                                           | CO5   | L2 |
| j) What is n type semiconductor.                                                                  | CO5   | L2 |
| $\frac{PART-B}{C}$                                                                                | `     |    |
| Answer <i>five</i> questions by choosing one question from each unit ( 5 x 10 = 50 Marks<br>Marks |       | BL |
| UNIT-I                                                                                            |       |    |
| 2. a) Explain interference in thin film due to reflected light and                                |       |    |
|                                                                                                   | CO1   | L2 |
| b) Describe colors in thin film and write examples. 4N                                            | CO1   | L2 |
| OR                                                                                                |       |    |
| 3. a) Explain construction and working of Nicol's prism to                                        |       |    |
| produce polarized light. 6N                                                                       | CO1   | L4 |
| b) Describe polarization of light by reflection. 4N                                               | CO1   | L2 |
| UNIT–II                                                                                           |       |    |
| 4. a) Calculate coordination number and packing fractions for                                     |       |    |
| SC, BCC and FCC. 6N                                                                               | CO2   | L2 |
| b) Derive the equation for interplanar spacing. 4N                                                | CO2   | L2 |
|                                                                                                   |       |    |

|     |            | •••                                                                   |      |     |    |
|-----|------------|-----------------------------------------------------------------------|------|-----|----|
| 5.  | a)         | Explain the crystal structure determination by powder method.         | 6M   | CO2 | 14 |
|     | <b>b</b> ) |                                                                       |      |     |    |
|     | D)         | Derive Bragg's law of X-ray diffraction.                              | 4111 | CO2 | L2 |
| •   |            | UNIT-III                                                              |      |     |    |
| 6.  |            | Define types of polarizations in dielectrics and derive the           |      |     |    |
|     |            | expression for electronic polarizability.                             | 10M  | CO3 | L1 |
|     |            | OR                                                                    |      |     |    |
| 7.  | a)         | Distinguish among dia, para and ferro magnetic materials.             | 6M   | CO3 | L4 |
|     | b)         | Explain briefly about Hysterisis concept in ferromagnetism.           | 4M   | CO3 | L2 |
|     |            | UNIT–IV                                                               |      |     |    |
| 8.  | a)         | Derive the equation for eigen values of a particle in one             |      |     |    |
|     |            | dimensional potential box.                                            | 6M   | CO4 | L4 |
|     | b)         | Calculate the energies of first and second quantum states             |      |     |    |
|     |            | of a particle confined to a potential box of length 2A <sup>0</sup> . | 4M   | CO4 | L3 |
|     |            | OR                                                                    |      |     |    |
| 9.  | a)         | Derive the expression for electrical conductivity according           |      |     |    |
|     |            | to quantum free electron theory.                                      | 6M   | CO4 | L5 |
|     | b)         | Write the differences between classical and quantum free              |      |     |    |
|     |            | electron theory.                                                      | 4M   | CO4 | L4 |
|     |            | UNIT–V                                                                |      |     |    |
| 10. | a)         | Derive the concentration of electrons in the conduction               |      |     |    |
|     |            | band of intrinsic semiconductors.                                     | 6M   | CO5 | L5 |
|     | b)         | Write the expression for electrical conductivity in intrinsic         |      |     |    |
|     |            | semiconductors.                                                       | 4M   | CO5 | L5 |
|     |            | OR                                                                    |      |     |    |
| 11. | a)         | Derive drift and diffusion currents?                                  | 6M   | CO5 | L2 |
|     | b)         | Deduce Einstein' equation.                                            | 4M   | CO5 | L2 |
|     | ,          | *** End ***                                                           |      |     |    |
|     |            |                                                                       |      |     |    |

| Code: 23A0221T                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R-23              |             |  |
| B.Tech. II Semester Regular Examinations July 2024                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |             |  |
| Basic Electrical & Electronics Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |             |  |
| (Common to CE, ME, CSE, CSE(DS) and AI&ML)                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |             |  |
| Max. Marks: 70 Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ne: 3 Hou         | Jrs         |  |
| Note: 1. Question Paper consists of two parts (Part-1 and Part-2)                                                                                                                                                                                                                                                                                                                                                                                                               |                   |             |  |
| <ol><li>Use separate Answer booklets for Part-1 and Part-2</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                            |                   |             |  |
| 3. Part-1 & Part-2 of question paper consists of Part-A & Part-B                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |  |
| 4. In Part-A, each question carries <b>One mark.</b>                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |             |  |
| 5. Answer ALL the questions in Part-A and Part-B<br>PART-1                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |             |  |
| PART-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |             |  |
| (Compulsory question)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |             |  |
| 1. Answer <b>all</b> the following short answer questions $(5 \times 1 = 5M)$                                                                                                                                                                                                                                                                                                                                                                                                   | CO                | BL          |  |
| a) State the Kirchhoff's current law?                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                 | 1           |  |
| b) Define the term RMS value?                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                 | 1           |  |
| c) What is the basic principle of three phase induction motor?                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                 | 1           |  |
| d) Which type of instruments is used for measuring DC voltages a                                                                                                                                                                                                                                                                                                                                                                                                                | nd                |             |  |
| DC currents?                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                 | 1           |  |
| e) What is the working principle of fuse?                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                 | 1           |  |
| PART-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |             |  |
| Answer any three questions by choosing one question from each unit (3x10=                                                                                                                                                                                                                                                                                                                                                                                                       |                   | •           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks             | CO          |  |
| UNIT–I                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |             |  |
| State and explain the Superposition theorem with an example?<br><b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                       | 10M               | 1           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |             |  |
| Explain the following terms with respect to alternating quantities with the help of neat diagram                                                                                                                                                                                                                                                                                                                                                                                |                   |             |  |
| with the help of neat diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |             |  |
| with the help of neat diagram<br>i) Phase and Phase difference ii) Frequency and period                                                                                                                                                                                                                                                                                                                                                                                         | 10M               | 1           |  |
| with the help of neat diagram<br>i) Phase and Phase difference ii) Frequency and period<br>iii) Resistance and impedance                                                                                                                                                                                                                                                                                                                                                        | 10M               | 1           |  |
| with the help of neat diagram<br>i) Phase and Phase difference ii) Frequency and period<br>iii) Resistance and impedance<br>UNIT–II                                                                                                                                                                                                                                                                                                                                             | 10M               | 1           |  |
| with the help of neat diagram<br>i) Phase and Phase difference ii) Frequency and period<br>iii) Resistance and impedance<br><b>UNIT–II</b><br>Explain the operating principle of DC generator and single                                                                                                                                                                                                                                                                        |                   | ·           |  |
| with the help of neat diagram<br>i) Phase and Phase difference ii) Frequency and period<br>iii) Resistance and impedance<br>UNIT–II                                                                                                                                                                                                                                                                                                                                             | 10M<br>10M        | 1           |  |
| with the help of neat diagram<br>i) Phase and Phase difference ii) Frequency and period<br>iii) Resistance and impedance<br><b>UNIT–II</b><br>Explain the operating principle of DC generator and single<br>phase transformer with neat diagram?                                                                                                                                                                                                                                |                   | ·           |  |
| with the help of neat diagram<br>i) Phase and Phase difference ii) Frequency and period<br>iii) Resistance and impedance<br><b>UNIT-II</b><br>Explain the operating principle of DC generator and single<br>phase transformer with neat diagram?<br><b>OR</b><br>Describe the construction and working of Moving coil instruments?                                                                                                                                              | 10M               | 2           |  |
| with the help of neat diagram<br>i) Phase and Phase difference ii) Frequency and period<br>iii) Resistance and impedance<br><b>UNIT-II</b><br>Explain the operating principle of DC generator and single<br>phase transformer with neat diagram?<br><b>OR</b><br>Describe the construction and working of Moving coil instruments?<br><b>UNIT-III</b>                                                                                                                           | 10M               | 2           |  |
| <ul> <li>with the help of neat diagram</li> <li>i) Phase and Phase difference ii) Frequency and period</li> <li>iii) Resistance and impedance</li> <li>UNIT–II</li> <li>Explain the operating principle of DC generator and single phase transformer with neat diagram?</li> <li>OR</li> <li>Describe the construction and working of Moving coil instruments?</li> <li>UNIT–III</li> <li>Briefly explain the operation of nuclear power station with a neat</li> </ul>         | 10M<br>10M        | 2           |  |
| with the help of neat diagram<br>i) Phase and Phase difference ii) Frequency and period<br>iii) Resistance and impedance<br><b>UNIT-II</b><br>Explain the operating principle of DC generator and single<br>phase transformer with neat diagram?<br><b>OR</b><br>Describe the construction and working of Moving coil instruments?<br><b>UNIT-III</b>                                                                                                                           | 10M               | 2           |  |
| with the help of neat diagram<br>i) Phase and Phase difference ii) Frequency and period<br>iii) Resistance and impedance<br><b>UNIT-II</b><br>Explain the operating principle of DC generator and single<br>phase transformer with neat diagram?<br><b>OR</b><br>Describe the construction and working of Moving coil instruments?<br><b>UNIT-III</b><br>Briefly explain the operation of nuclear power station with a neat<br>sketch?<br><b>OR</b>                             | 10M<br>10M        | 2<br>2<br>3 |  |
| <ul> <li>with the help of neat diagram</li> <li>i) Phase and Phase difference ii) Frequency and period</li> <li>iii) Resistance and impedance</li> <li>UNIT-II</li> <li>Explain the operating principle of DC generator and single phase transformer with neat diagram?</li> <li>OR</li> <li>Describe the construction and working of Moving coil instruments?</li> <li>UNIT-III</li> <li>Briefly explain the operation of nuclear power station with a neat sketch?</li> </ul> | 10M<br>10M<br>10M | 2           |  |

### B.Tech. II Semester Regular Examinations July 2024

**Basic Electrical & Electronics Engineering** 

(Common to CE, ME, CSE, CSE(DS) and AI&ML)

#### <u> PART-2</u>

# PART-A

| (Compulsory question)                                                                                    |        |    |
|----------------------------------------------------------------------------------------------------------|--------|----|
| 1. Answer <b>all</b> the following short answer questions $(5 \times 1 = 5M)$                            | СО     | BI |
| a) Draw the forward characteristics of p-n junction diode.                                               | CO1    | 2  |
| b) Define the Zener effect in Zener diodes.                                                              | CO1    | 1  |
| c) Describe the difference between intrinsic and extrinsic semiconductors.                               | CO1    | 1  |
| <ul><li>d) Sketch the circuit diagram of Full wave rectifier circuits.</li></ul>                         |        |    |
|                                                                                                          | CO2    | 1  |
| e) Convert (1001) <sub>2</sub> into a decimal number.<br>PART-B                                          | CO2    | 3  |
| Answer any three questions by choosing one question from each unit (3x10=30 M                            | larks) |    |
| Marks                                                                                                    | co     | BL |
| UNIT–I                                                                                                   |        |    |
| 2. Sketch the input and output characteristics of common                                                 |        |    |
| emitter transistor configuration and explain briefly. 10M                                                | CO3    |    |
| OR                                                                                                       |        |    |
| 3. Explain the VI characteristics of PN junction diode. 10M                                              | CO3    |    |
| UNIT–II                                                                                                  |        |    |
| 4. Describe the working principle of a Zener diode. How is                                               |        |    |
| it used for voltage regulation? Provide a circuit diagram                                                |        |    |
| and explain its operation under different load conditions. 10M                                           | CO4    |    |
| OR                                                                                                       |        |    |
| 5. With a neat circuit diagram and waveforms explain the                                                 |        |    |
| working of full wave bridge rectifier with C filter                                                      | CO4    |    |
|                                                                                                          | 004    |    |
| 6. a) Design a full adder with two half adders 5M                                                        | CO5    |    |
|                                                                                                          | 005    |    |
| <ul> <li>b) Describe the working of JK flip flop with help of its truth<br/>table</li> <li>5M</li> </ul> | CO5    |    |
| OR                                                                                                       | 000    |    |
|                                                                                                          |        |    |
|                                                                                                          | CO5    |    |
| b) Write a short notes on                                                                                |        |    |
| i) Resistors<br>ii) Counters 5M                                                                          | CO5    |    |
|                                                                                                          | 000    |    |