	Hall Ticket Number:														7
	Code: 23AHS24T									J	J		R-2	3	
		h. II Se	emeste	er Re	egul	ar E	xam	nina [.]	tions	s Jul	y 202	24			
		100000			her		•		-1 CC	⊏/ ∧ 1'	١١				
	Max. Marks: 70	(Comr	mon ic) EEE	i, EC	E, Al	&D3	and	ı Cs	E(AI,))	7	Time: 3	Hours	;
	Note 4 Occation Barre		-161			****			(D)						
	Note: 1. Question Pape 2. In Part-A, each			-				a Pa	irt-B))					
	3. Answer ALL th	•						3							
						RT-A		\							
1.	Answer all the follo	wina s	•	-			iestion stion	•	10	X 2	= 20	M)		СО	BL
) Calculate the bor	•		_		-			•	/\ _	_0	,			L3
) Define and 2				, 9										L2
	Write two application	itions	of sur	oer o	cond	duct	ors.							CO2	
) What are p-type		•						Sive	exa	ample	es.			L1
) Describe the con										•				L2
) Draw the constru	•					-								 L4
Ç	,							nopl	lasti	cs					L2
h								•							L1
) What is the impo	•		sp	ectr	osco	руя	?							L1
) Describe the bas	ic prin	nciple	of c	hroi	mate	ogra	phy	/ .					CO5	L2
					PAI	RT-B									
	Answer five questi	ons by	choosii	ng on	e qu	estio	n fro	m ea	ch u	nit (5 x 10	= 50) Marks)	
													Marks	СО	BL
					UN	IIT-I									
2.										•			4014		
	molecular ene	rgy iev	vei dia	grai			z an	ia C	O m	ioie	cuies) .	10M	CO1	L4
2	Domines Colore	م م مانام				OR		a 10 al		مام	ا 4 مــا:	h a			
3.	Derive Schro significance of	_	_	ve	equ	Jano	ווכ	anu	e	кріа	III U	ne	10M	CO1	13
	oigimioarios oi	. a.			UN	IIT-I	I						. 0	001	LO
4.	Describe the	prop	erties	of				Nar	nom	ater	ials	in			
	detail. List o	ut the	eir sig	gnifi	cant	ap	plic	atio	ns	in v	/ario	us			
	fields.												10M	CO2	L2
						OR									

Code: 23AHS24T

5. Explain the types and properties of supercapacitors. Discuss their practical applications in various fields of 10M CO₂ L₂ engineering. **UNIT-III** Derive Nernst equation and explain its significance in 6. calculating cell potentials. 10M co₃ L₃ OR 7. a) Explain the principle and applications of Polymer Electrolyte Membrane Fuel cell (PEMFC). 5M CO3 L2 b) What are the potentiometric sensors? Explain their practical applications with suitable examples. 5M CO₃ L₁ **UNIT-IV** 8. a) Explain chain growth and step growth polymerization techniques with suitable examples. 5M CO4 L2 b) Give an account of the preparation and properties of elastomers. 5M CO4 L4 OR 9. Explain the mechanism of conduction in conducting polymers and discuss their practical applications. 10M CO₄ L₂ **UNIT-V** 10. Describe various electronic transitions induced by UV-Visible radiation and explain the significance of Beer-Lambert's law in UV-Vis spectroscopy 10M CO₅ L₂ OR 11. Draw the setup of HPLC chromatography and write a detailed account of its working mechanism. 10M CO₅ L₄ *** End ***

Hall Ticket Number :	R-23	
Code: 23AHS22T		
B.Tech. II Semester Regular Examinations July 2024		
Communicative English (Common to EEE, ECE, ALV DS and CSE(ALV)		
(Common to EEE, ECE, AI&DS and CSE(AI)) Max. Marks: 70	Time: 3 Ho	ours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)		
 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 		
PART-A		
(Compulsory question)		
1. Answer <i>all</i> the following short answer questions (10 X 2 = 20M)	CO	BL
a) What did Della do with her hair and why?	CO1	L2
b) What kind of landscape is described in the first three stanza	as in	
the poem "The Book'?	CO1	L2
c) Write the meanings of the following words:		
i. coot ii. evaluate iii. deliberate iv. squadron	CO2	2 L2
d) Briefly describe two of business ventures of Elon Musk.	CO1	L4
e) Explain Note-making.	CO3	L2
f) What is a Chronological Resume?	CO3	8 L2
g) What announcement by the National Peace Council o	loes	
Elizabeth show her brother?	CO1	L2
h) List out types of Essays.	CO3	8 L2
i) What is self-esteem?	CO3	L2
j) Define technical jargon and provide any four examples. <u>PART-B</u>	CO2	2 L1
Answer <i>five</i> questions by choosing one question from each unit $(5 \times 10 =$		00
UNIT-I	Marks	СО
a) How do Jim's and Della's actions symbolise the strength	of	
their love for each other.		CO1
		COT
b) Write a note on the different ways the financial situation of t		
couple in the story "The Gift of the Magi".	OIVI	CO1
OR		
a) Write a Formal Dialogue between two officials in an offi	ce	
"Introducing each Other".	5M	CO1
o) Write the meaning and one example for the following Ro	oot	
Words: i.bio ii.extra iii. gram iv. glot v. neo vi. mega	5M	CO3
UNIT-II		
a) Write an elaborate paragraph on "Superstitions".	5M	CO3
o) Fill in the blanks with suitable Prepositions:	5M	CO3
i. He lives 19 Tower Road.		
ii. I will arrive eight o' clock.		
iii. I have known her last year.		
iv. Missing the bus is no excuse being late.		
IV. IVIDALIU IUG DUA IA IIU GAGUAG — UGIIIU MIG.		

vi. We will take a survey _____ the participants.

Code: 23AHS22T

OR

5.		How has the poet described landscape, flowers, plants and colours in the poem? How does it make you feel as a reader? Substantiate your answer with examples form the poem.	10M	CO1	12
		UNIT-III	TOIVI	COT	LS
6.		In what way has Musk proved to be a visionary leader of			
		cutting-edge technology? Discuss with relevant examples.	10M	CO1	L4
		OR			
7.	a)	Fill in the blanks with suitable <i>verb</i> forms:	5M	CO3	L3
		i. Keep (guess) the answers till you get them right.			
		ii. Were you (pay) attention to what was being said?			
		iii. I have (read) many books in the last one year.			
		iv. How have you been?(do)			
		v. Asif (teach) for six years at the computer institute by the time his father retires.			
		vi. Raman (live) in Chennai for 10 years.			
	b)	Fill in the blanks with Collocation words:	5M	CO4	L4
	٠,	i. We couldn't take up another assignment as we were			
		ii. My work hours are flexible. I don't need to begin at a			
		iii. John asked his boss, 'I know you're busy, but can you			
		for me this week? I need to discuss something with you'.			
		iv. Tsering was so eager to finish that he got done in			
		v. We have before the train arrives.			
		vi. Vishnu has been through some			
		UNIT-IV			
8.	a)	Describe how the children found an exciting way to play with			
		their new to play with their new non-violent toys.	5M	CO1	L4
	b)	Write a letter to the Principal to organize a workshop on A I to			
		resolve the A I future doubts.	5M	CO4	L3
0	-1	OR			
9.	a)	Do you think Harvey and Elizabeth's experiment failed?	5N/	004	
	ل ما	Justify your answer.	Sivi	CO1	L4
	D)	Prepare a resume for applying a job as software developer in	51/1	004	
		IT industry. UNIT-V	Sivi	CO4	L3
10	a)	What are the different ways in which Interpersonal			
10.	u,	Communication helps improve everyday life?	5M	CO3	L1
	b)	Write six to eight presentation tips in making a presentation.	5M	CO3	L2
		OR			
11.		Write an Essay on the topic: "The impact of social media on	4084		
		youth". *** End ***	10M	CO3	L3
		EIIU · · ·			

	На	all Ticket Number:	D 00		
	Cod	le: 23AHS21T	R-23		
		B.Tech. II Semester Regular Examinations July 2024 Differential Equations and Vector Calculus (Common to All Branches)			
	Ma	x. Marks: 70	Time: 3 H	ours	
	Note	******** 2: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks . 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question)			
1 A	nsw	er all the following short answer questions (10 X 2 = 20M)		СО	BL
		Te $(2^r \text{ the follow})_{\text{ng short answer c}}^{\text{computity}} = 0.$		CO1	L3
b)	Stat	e Newton's Law of Cooling.		CO1	_0 L1
,		$\theta \left(\begin{array}{ccc} 2x & + & + & + & + & + & + & + & + & + & $		CO2	L3
d)	Find	$ P \text{ of } \begin{cases} -4D + 4y = 6 \\ -3 + 4D + 4y = 6 \end{cases}$ $ P \text{ of } \begin{cases} -4D + 4y = 6 \\ -2 + 5D + 6y = 63x \\ -2 + 3D + 6y = 63x \\ -2 + 3D + 6y = 63x \end{cases}$		CO2	L3
		Phe $(D^2 + 5D + 6)y = 63x$ in by eliminating arbitrary co	netants	002	_0
,	Forr	the partial differential equality from $z = ax + by + a^2 + b^2$.	onotanto	CO3	L3
f)	Solv	th partial differential $z = ax + by + a^2$ $p \sqrt{\frac{z}{x} + q\sqrt{y}} = \sqrt{z}.$		CO3	L3
g)	Find	grad f, where $= \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$		CO4	L1
h)	Shov	w that $f = 3$ solenoidal, where $f = 3$ 2 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4 4 4 4 4 4 4 4 4 4	12 R	CO4	L1
i)	Eva	w that f is solenoidal, where $f = 3\frac{xy^2}{y^2z^2} + 3\frac{x^2z^2}{z^2} + 3x^2z^2$	C is the	CO5	L3
	_			005	1.4
J)	Sia	te Green's theorem <u>PART-B</u>		CO5	L1
	Ar	nswer <i>five</i> questions by choosing one question from each unit (5 x 10) = 50 Mark	s)	
			Marks	CO	BL
•	,	UNIT-I			
2.	a)	Solve $\frac{dy}{dx} + \frac{\text{UNIT-I}}{ytanx} = y^3 secx.$ Solve $(4^2 + ytan^2 = y^3 secx.$	5M	CO1	L3
	b)	Solve $\left(4\frac{z + y \tan x}{xy + 3y^2 - x^2}\right) \frac{\sin x}{xy + 2y^2 dx + x(x + 2y)dy} = 0.$	5M	CO1	L3
		OR			
3.	a)	Solve $3x \frac{dy}{dx} = 1$	5M	CO1	12
	h)	Solve $\frac{(4xy + 3y)}{xy(1 + xy^2)} \frac{dy}{dx} = 1$ If the temperat $\frac{dy}{dx} = \frac{1}{2}$ Cools from 100^0 re of 70^0 C in $\frac{dy}{dx} = \frac{1}{15}$ minutes. Find when the substant $\frac{dy}{dx} = \frac{1}{15}$	בי	COT	L3
	~ <i>)</i>	cools from $1000^{\text{re of }700}C$ in similar and Find when the	ne		
		temperature will be 40^{0C} .	5M	CO1	L3

Code: 23AHS21T

UNIT-II

4. Solve $\binom{D-2}{2} = \frac{1}{2} \binom{DNIT-II}{2} \binom{DNIT-II}{2}$

10M CO₂ L₃

OR

5. Solve the simultaneous equations $\frac{a_x}{at} + 2y + \frac{s}{2int} = 0$, $\frac{dy}{dt} - 2x - cost = 0$, given that x = 0 and y = 1 when t = 0.

10M CO₂ L₃

UNIT-III

6. a) F_{brm} the bartial differential equation by eliminating arbitrary constants a, b and c from

$${\binom{x-a)_2}{\text{orm t}}} + {\binom{y-b)_2}{\text{orticl}}} + {\binom{z_2}{\text{orticl}}} = {\binom{z_2}{\text{orticl}}}$$

5M co₃ L₃

b) Form the partial differential equation by eliminating arbitrary functions f and g from z = f(y + 2x) + g(y - 3x).

5M co₃ L₃

OR

10M CO3 L3

UNIT-IV

8. a) If $\mathbf{p} = \nabla(\mathbf{x}^3 + \mathbf{y}^3 + \mathbf{z}^3 - 3\mathbf{z}\mathbf{y}\mathbf{z})$ find $\mathbf{curl}(\mathbf{p})$.

5M CO4 L3

- b) Find the directional derivative of $\frac{\mathbf{T-iV}}{|\mathbf{r}|} = \frac{1}{|\mathbf{r}|} = \frac{1}{$
- 5M CO4 L3

OR

9. a) between the surfaces $\lim_{z = x^2 + y^2 - 13} \text{ at (2,1,2)}.$

5M CO4 L3

b) $F_{\text{nd the}}^{= x^2 + 7} \text{alu}(\frac{13}{250} \text{ f } a, b, c)$

if $\vec{F} = (x+y+az)\hat{\imath} + (bx+2y-z)\hat{\jmath} + (x+cy+2z)\hat{k}$ is irrotational

5M CO4 L3

UNIT-V

10. Find the work down by a force $\frac{1}{\sum_{i=1}^{\infty} (2^i)^2}$ along the straight line from (0, 0, 0) to (2, 1, 3).

OR

11. Verify the Gi seen's the orem for $\int_C (xy + \frac{2}{y^2}) dx + \frac{2}{x^2-dy}$, where C is bounded by y = x and $y = x^2$.

*** En ***

*** End ***

Hall Ticket Number: R-23 Code: 23A0222T

B.Tech. II Semester Regular Examinations July 2024

Electrical Circuit Analysis-1

(Electrical and Electronics Engineering)

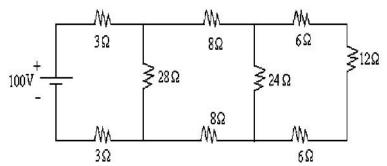
Max. Marks: 70 Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. In Part-A, each question carries Two marks.
- 3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)


	(Compaisory question)						
1. A	Inswer <i>all</i> the following short answer questions $(10 \text{ X } 2 = 20 \text{M})$	CO	BL				
a)	Write V-I relationships for R, L and C elements.	CO1	2				
b)	Find the equivalent resistance of three resistors of each 20 , 40 and 10 connected in parallel.	CO1	2				
c)	What are the quantities that are analogous in magnetic circuits to						
	voltage and current in electric circuits?	CO2	2				
d)	Define Flux density and write its units	CO2	1				
e)	What is the phase angle by which $v_1(t) = 100 Sin(1000t + 30^0)$ V leads $v_2(t) = 100 Sin(1000t - 20^0)$ V?						
	V.	CO3	3				
f)	What is the impedance of parallel RLC circuit with $R = 5$, L=2mH,						
	C=500µF for an operating frequency of 1000 rad/sec.	CO3	3				
g)	What is the condition for resonance in series RLC circuit?	CO4	1				
h)	Draw the locus diagram of a typical RL circuit (R fixed, L variable)	CO4	2				
i)	State Millman's theorem	CO5	1				
j)	Write the limitations of superposition theorem	CO5	2				
<u>PART-B</u>							

Answer *five* questions by choosing one question from each unit ($5 \times 10 = 50$ Marks)

BL Marks CO

UNIT-I

2. a) Find the current delivered by the source for the network shown in figure using network reductions technique.

7M

1 3

Code: 23A0222T

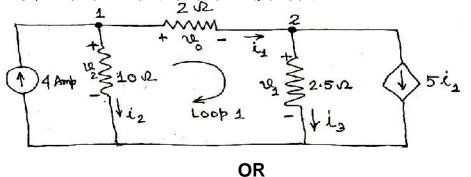
3M

5M

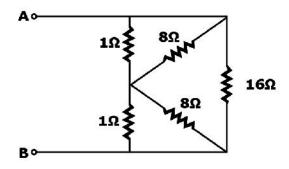
5M

1

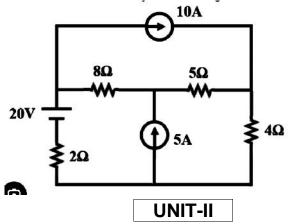
1

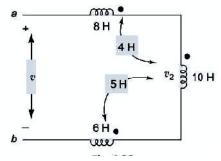

1

3


3

3


b) Find v0, v1 and v2 for the following circuit


3. a) Find the equivalent resistance of the following circuit.

b) Determine the mesh currents in the following circuit.

4. a) Calculate the effective inductance of the circuit shown in Figure across terminals a and b.

b) Explain the concept of dot convention.

5M 2 3

5M 2 2

OR

Code: 23A0222T

10M

5M

5M

5M

5M

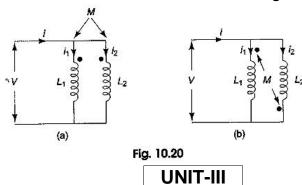
2

3

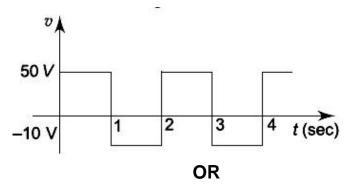
3

3

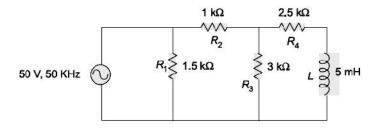
3

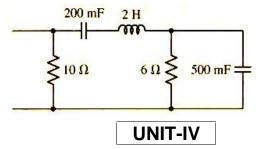

3

3


3

2


5. Find the equivalent inductance for the following circuits:


- 6. a) Derive an expression of RMS and average values of an AC voltage characterized by $v(t) = Vm \sin(\omega t)$.
 - b) Calculate RMS value of the following voltage waveform shown in Figure.

7. a) Determine total impedance, total current and power factor of following circuit.

b) Find the equivalent impedance for a given operating frequency of 5 rad/sec.

8. a) A voltage v=10 V is applied to a series RLC circuit. At the resonant frequency of the circuit, the maximum voltage across the capacitor is found to be 500 V. Moreover, the bandwidth is known to be 400 rad/sec and the impedance at resonance is 100 . Find the resonant frequency. Also find the values of L and C of the circuit.

5M 4 3

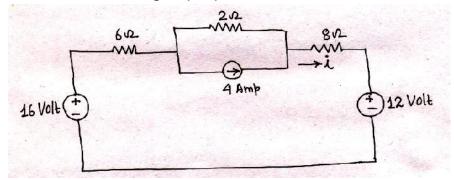
Page 3 of 4

Code: 23A0222T

b) Define resonance frequency and half power frequency. Derive the expression for series resonance frequency

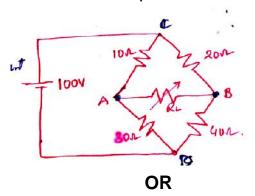
5M

3


OR

A series RLC circuit having R=10 , L=0.1H and C=50µF is 9. excited by a variable frequency source having a source voltage resonant frequency, impedance 50V. Determine resonance, current at resonance, bandwidth and Q-factor.

10M 3


UNIT-V

10. a) Determine 'i' using superposition theorem

5M 5 3

b) Find the maximum power transferred to the load in following circuit. Also determine maximum power transferred to load.

5M 5 3

3

11. State and explain Norton's theorem

10M 5

*** End ***

Hall Ticket Number :			
	R-23		
Code: 23A0121T B.Tech. II Semester Regular Examinations July 2024			
Basic Civil & Mechanical Engineering			
(Common to EEE, ECE, AI&DS and CSE(AI)) Max. Marks: 70	ime: 3 I	Jours	
**************************************	IIII C . 3 I	10013	
Note: 1. Question Paper consists of two parts (Part-1 and Part-2)			
 Use separate Answer booklets for Part-1 and Part-2 Part-1 & Part-2 of question paper consists of Part-A & Part-B 			
4. In Part-A, each question carries One marks.			
5. Answer ALL the questions in Part-A and Part-B			
<u>PART-1</u> PART-A			
(Compulsory question)			
1. Answer all the following short answer questions ($5 \times 1 = 5M$)	CO	BL	
 a) Mention any four construction materials. 	CO1	L2	
b) Define- Porosity.	CO1	L2	
c) What is meant by estimation?	CO2	L2	
d) Write the use of levelling instruments.	CO2	L2	
e) What is Rigid pavement?	CO3	L2	
$\frac{PART-B}{Answer five \text{ questions by choosing one question from each unit } (3 \times 10 = 30)$	Marke)	
Answer five questions by choosing one question from each unit (5 x 10 - 30	Marks	co	BL
UNIT-I			
What are the ingredients of cement concrete? Explain the	4014		
process of making various types of concrete in detail.	10M	CO1	L3
OR			
Discuss the scope of Water resources Engineering and Environmental Engineering in detail.	10M	CO1	LO
UNIT-II	IOIVI	COT	LZ
Explain the following with suitable example.			
(i) Angular measurements. (ii)Contour mapping.	10M	CO2	13
OR			
Explain the following with respect to a room of dimensions			
3metres x 3metres x 3metres.			
(i) Detailed estimate. (ii) Abstract estimate.	10M	CO2	L3
UNIT-III			
Explain the applications of Rigid pavements and Flexible	4014		
pavements with examples.	10M	CO3	L3
OR Explain the following with suitable example. (i) Pain water			
Explain the following with suitable example. (i) Rain water harvesting. (ii) Types of dams and Reservoirs.	10M	CO3	12
i.a. 133tilig. (ii) Typos of dalilo alia 11000110110.	. 0171	000	

2.

3.

4.

5.

6.

7.

Code: 23A0121T

PART-2

PART-A

(Compulsory question)

	1. <i>F</i>	Answer all the following short answer questions $(5 \times 1 = 5M)$	CO	BL	
	a)	Write industrial applications of non-ferrous metals.	4	4 1	
	b)	What is the use of riser in a casting pattern?	į	5 1	
	c)	Write the full form of CNC.	į	5 1	
	d)	Draw the p-V diagram of an Otto cycle.	į	5 1	
	e)	Write any two applications of robotics?	(5 1	
		PART-B			
		Answer <i>five</i> questions by choosing one question from each unit $(3 \times 10 = 3 \times 10)$		-	
		UNIT-I	Marks	CO	BL
2.	a)	Briefly explain the role of a mechanical engineer in the			
		following sectors: (i) Automotive and (ii) Marine.	6M	4	1
	b)	What is the role of a mechanical engineering in aerospace			
		industry?	4M	4	1
		OR			
3.	a)	What are the advantages and limitations of using composite			
		materials in aerospace industry compared to conventional			
		materials?	6M	4	1
	b)	Name any two smart materials and describe their applications.	4M	4	1
1	٥)	UNIT-II Priofly explain the costing process. Why it is required?	en 1	_	•
4.	a)	Briefly explain the casting process. Why it is required?	6M	5	3
	b)	Briefly explain steps/stages involve in 3D printing.	4M	5	2
		OR			
5.	a)	With a neat T-s diagram, explain the working principle of a			
		vapour compression refrigeration cycle. Write the formula for	 N 4		
		its COP.	5M	5	2
	b)		5M	5	2
_		UNIT-III D	01.4		
6.	,	With a neat sketch explain the working of a Diesel power plant.	6M	6	3
	b)	What are the challenges in running hydro power plants?	4M	6	2
		OR			
7.	a)	What are the different power transmission devices? Explain			
		working of belt drive transmission with a neat sketch.	5M	6	2
	b)	What are the basic laws of robotics? Explain.	5M	6	2
		*** End ***			