	На	all Ticket Number :					
	Cod	de: 23AHS21T	R-23				
		B.Tech. Il Semester Regular Examinations July 2024 Differential Equations and Vector Calculus (Common to All Branches)					
	Ma	x. Marks: 70	Time: 3 H	ours			
	Note	******** e: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks . 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question)					
1 A	nsw	er <i>all</i> the following short answer questions (10 X 2 = 20M)		СО	BL		
		$e\left(2^{t \text{ the follow}}\right)_{\substack{ng \text{ short answer c} \\ dx + y + 1}} = 0.$		CO1	L3		
b) :	Stat	e Newton's Law of Cooling.		CO1	_0 L1		
,		/e (lewton; = Law of Col		CO2	L3		
d)	Find	$ P \text{ of } \begin{cases} -4D + 4y = 6 \\ -2 + 4D + 4y = 6 \end{cases}$ $ P \text{ of } \begin{cases} -4D + 4y = 6 \\ -2 + 5D + 6y = 63x \\ -2 + 5D + 6y = 63x \end{cases}$					
		Phe $(D^2 + 5D + 6)y = 63x$ in by eliminating arbitrary co	netants	002	_0		
′	Forr	the partial differential equality from $z = ax + by + a^2 + b^2$.	motanto	CO3	L3		
f) ;	Solv	th partial differential $Z = ax + by + a^2$ $P = \sqrt{x} + q\sqrt{y} = \sqrt{z}.$		CO3	L3		
g)	Find	I grad f, where $= \frac{\sqrt{2}}{\sqrt{2}} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}$		CO4	L1		
h)	Shov	w that $f = 3$ solenoidal, where $f = 3$ $2 \times 2 \times 2 \times 2 \times 1 + 3$ $2 \times 2 \times 2 \times 2 \times 1 + 3 \times 2 \times 1 +$	12 R	CO4	L1		
i)	Eva	w that f is solenoidal, where $f = 3 \frac{x^{3} + 3}{x^{2} + 2} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2} + 2} \frac{1}{x$	C is the	CO5	L3		
	_	_		005	1.4		
J)	Sia	te Green's theorem PART-B		CO5	L1		
	Ar	nswer <i>five</i> questions by choosing one question from each unit (5 x 10) = 50 Mark	is)			
			Marks	CO	BL		
•	,	UNIT-I					
2.	a)	Solve $\frac{dy}{dx} + \frac{\text{UNIT-I}}{ytanx} = y^3 secx.$ Solve $(4^2 + ytan^2 = y^3 secx.$	5M	CO1	L3		
	b)	Solve $\left(4\frac{2}{xy} + \frac{y\tan x}{3y^2} = \frac{y^3 \sec x}{x^2 \cot x} + \frac{y^3 \sec x}{x^2 \cot x} = 0.$	5M	CO1	L3		
OR							
3.	a)	Solve	5M	CO1	12		
	h)	Solve $\frac{(4xy + 3y)}{xy(1 + xy^2)} \frac{dy}{dx} = 1$ If the temperat $\frac{y}{dx} = \frac{1}{2}$ the air i $\frac{30}{6}$ the substant cools from $\frac{1000}{6}$ re of $\frac{700}{6}$ in $\frac{1}{15}$ minutes. Find when the	אַנ	COT	L3		
	~ <i>)</i>	cools from 100° re of 70° C in s minutes. Find when the	ne				
		temperature will be 40^{0C} .	5M	CO1	L3		

Code: 23AHS21T

UNIT-II

4. Solve $\binom{D-2}{2} = \frac{1}{2} \binom{DNIT-II}{2} \binom{DNIT-II}{2}$

10M CO₂ L₃

OR

5. Solve the simultaneous equations $\frac{a_x}{at} + 2y + \frac{s}{2int} = 0$, $\frac{dy}{dt} - 2x - cost = 0$, given that x = 0 and y = 1 when t = 0.

10M CO₂ L₃

UNIT-III

6. a) F_{brm} the bartial differential equation by eliminating arbitrary constants a, b and c from

$${\binom{x-a)_2}{\text{orm t}}} + {\binom{y-b)_2}{\text{orticl}}} + {\binom{z_2}{\text{orticl}}} = {\binom{z_2}{\text{orticl}}}$$

5M co₃ L₃

b) Form the partial differential equation by eliminating arbitrary functions f and g from z = f(y + 2x) + g(y - 3x).

5M co₃ L₃

OR

10M CO3 L3

UNIT-IV

8. a) If $\mathbf{p} = \nabla(\mathbf{x}^3 + \mathbf{y}^3 + \mathbf{z}^3 - 3\mathbf{z}\mathbf{y}\mathbf{z})$ find $\mathbf{curl}(\mathbf{p})$.

5M CO4 L3

- b) Find the directional derivative of $\frac{\mathbf{T-iV}}{|\mathbf{r}|} = \frac{1}{|\mathbf{r}|} = \frac{1}{$
- 5M CO4 L3

OR

9. a) between the surfaces $\lim_{z = x^2 + y^2 - 13} \text{ at (2,1,2)}.$

5M CO4 L3

b) $F_{\text{nd the}}^{= x^2 + 7} \text{alu}(\frac{13}{250} \text{ f } a, b, c)$

if $\vec{F} = (x+y+az)\hat{\imath} + (bx+2y-z)\hat{\jmath} + (x+cy+2z)\hat{k}$ is irrotational

5M CO4 L3

UNIT-V

10. Find the work down by a force $\frac{1}{\sum_{i=1}^{\infty} (2^i)^2}$ along the straight line from (0, 0, 0) to (2, 1, 3).

OR

11. Verify the Gi seen's the orem for $\int_C (xy + \frac{2}{y^2}) dx + \frac{2}{x^2-dy}$, where C is bounded by y = x and $y = x^2$.

*** En ***

*** End ***

B.Tech. II Semester Regular Examinations July 2024

Engineering Mechanics

(Common to CE & ME)

Max. Marks: 70 Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. In Part-A, each question carries Two marks.
- 3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1.	Answer all the following short answer questions $(10 \text{ X } 2 = 20 \text{M})$	CO	BL
a)	What are the characteristics of a force?	1	L1
b)	What do you mean by free body diagram and redundant support?	1	L1
c)	Define angle of friction and cone of friction.	2	L1
d)	What are the assumptions in the analysis of plane trusses?	2	L2
e)	Differentiate centroid and center of gravity.	3	L2
f)	State perpendicular axis theorem applicable to area moment of inertia.	3	L1
g)	What is the difference between rectilinear and curvilinear translations?	4	L2
h)	Define range and maximum height of a projectile.	4	L1
i)	Define impulse and momentum.	5	L1
j)	What is virtual work? State virtual work principle.	5	L1

PART-B

Answer five questions by choosing one question from each unit ($5 \times 10 = 50 \text{ Marks}$)

Marks CO BL

UNIT-I

2. Two identical rollers, each of weight Q = 100 N, are supported by an inclined plane and a vertical wall as shown in Figure 1. Assuming smooth surfaces, find the reactions induced at the points of support A, B and C.

Figure 1 OR

10M 1 L3

Code: 23A0323T

3. Two forces of magnitude 250 N and 190 N are acting at a point O as shown in figure. If the angle between the forces is 60°, determine the magnitude of the resultant force. Also determine the angle and as shown in figure.1.

4. Find the forces in all the 8 members of the truss shown in Figure 3.

10M 2 L3

5. Two blocks of weights W_1 and W_2 rest on a rough inclined plane and are connected by a short piece of string as shown in Figure 4. If the coefficients of friction are $\mu_1 = 0.2$ and $\mu_2 = 0.3$, respectively, find the angle of inclination of the plane for which sliding will impend. Assume $W_1 = W_2 = 20$ N.

6. Find the center of gravity of I-Section show in.

Code: 23A0323T

OR

Derive an expression for the moment of inertia of a right 7. circular cone of uniform density, radius of base a, and altitude h, with respect to its geometric axis. 10M 3 L2 8. a) Explain about kinematics of rectilinear translation. 4M L2 b) A ship while being launched slips down the skids with uniform acceleration. If 10 sec is required to traverse the first 4.9 m, what time will be required to slide the total distance of 122 m? With what velocity will the ship strike the water? 6M L3 OR 9. a) Explain about kinematics of plane motion. 4M L2 The armature of an electric motor has angular speed N=1800rpm at the instant when the power is cut off. If it comes to rest in 6 seconds.

- (i) Calculate the angular deceleration assuming that it is constant.
- (ii) How many complete revolutions does the armature make during this period?

6M 4 L3

UNIT-V

10. Neglecting friction and inertia of the two pulleys shown in Figure 6 find the acceleration a of the weight Q, assuming that P = Q.

Figure 6 OR

10M 5 L3

11. A body of weight 8 N is suspended by a light rope wound round a pulley of weight 60 N and radius 30 cm. The other end of rope is fixed to the periphery of the pulley. If the weight is moving downwards, calculate for the acceleration of 8 N weight and tension in the string.

10M 5 L3

	Hall Ticket Number :			
	Code: 23A0322T-C	R-23		
	B.Tech. II Semester Regular Examinations July 2024			
	Engineering Graphics			
	(Common to CE, ME and AI&ML)			
	Max. Marks: 70 Tir	ne: 3 Ho	ours	
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 14 = 70$	Marks)		
	Answer me questions by choosing one question from each unit (5 x 14 = 70	Marks	СО	BL
	UNIT-I			
1.	Draw an involute of a hexagon of side 25 mm. Draw the tangent			
	and normal at any point on the involute.	14M	1	3
	OR			
2.	A line of 1 centimeter represents an actual length of 4 dm. Draw			
	a plain scale and mark a distance of 6.7 m on it.	14M	1	3
	UNIT-II			
3.	Draw the projections of the following points on a common			
	reference line keeping the distance between their projectors			
	30mm apart.			
	(a) Point P is 35 mm below the H.P. and in the V.P.			
	(b) Point Q is 40 mm in front of the V.P. and 25 mm below the H.P.			
	(c) Point R is 45 mm above the H.P. and 20 mm behind the V.P.			
	(d) Point S is 30 mm below the H.P. and 45 mm behind the V.P.			
	(e) Point T is both in H.P. and V.P.			
	(f) Point U is 40 mm above the H.P. and on V.P.	4 4 5 4		
	(g) Point V is 20 mm behind the V.P. and on H.P.	14M	2	3
	OR			
4.	A 70 mm long line PQ, has its end P 20 mm above the H.P.			
	and 30 mm in front of the V.P. The line is inclined at 45° to the	14M	0	0
	H.P. and 30° to the V.P. Draw its projections. UNIT-III	14111	2	3
5.	A hexagonal plane of side 30 mm has an edge on the H.P. Its			
J.	surface is inclined at 45° to the H.P. and the edge on which the			
	plane rests is inclined at 30° to the V.P. Draw its projections.	14M	3	3
	OR			
6.	A cylinder of base diameter 50 mm and axis 70 mm has a			
٠.	generator in the V.P. and inclined at 45° to the H.P. Draw its			
	projections.	14M	3	3
	UNIT-IV			
7.	A pentagonal pyramid of base side 30 mm and axis 60 mm is			
	resting on its base in the H.P. with an edge of the base parallel			
	to the V.P. A horizontal section plane cuts the pyramid	4 4 5 4		
	bisecting the axis. Draw its front view and sectional top view.	14M	4	3
	OR			

Code: 23A0322T-C

8. A cone of base diameter 50 mm and axis 60 mm is resting on its base on the H.P. A section plane perpendicular to V.P. and inclined at 45° to H.P., bisects the axis of the cone. Draw the development of its lateral surface.

14M 4 3

UNIT-V

9. The front and side views of an object are shown in Fig. Draw its isometric view.

14M 5 3

10. Draw the front view, top view and side view to the following isometric view

14M CO5 L3

Hall Ticket Number :	-23		
Code: 23AHS25T			
B.Tech. Il Semester Regular Examinations July 2024 Engineering Physics			
(Common to CE, ME, CSE, CSE(DS) and AI&ML)			
Max. Marks: 70 Time	: 3 H	ours	
******* Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
2. In Part-A, each question carries Two marks .			
3. Answer ALL the questions in Part-A and Part-B			
PART-A			
(Compulsory question) 1. Answer <i>all</i> the following short answer questions (10 X 2 = 20M)	(CO	BL
a) Define interference and diffraction.		01	L1
b) What is resolving power of grating?			L2
c) Define the terms lattice and basis.			L1
d) What are miller indices?			L2
e) Write the relation between relative permittivity and susceptibility.			L4
f) Define the terms Magnetic permeability and susceptibility.	С	O3	L1
g) What are matter waves?	С	04	L1
h) State Heisenberg uncertainity principle.	С	04	L1
i) What is Hall effect?	С	O5	L2
j) What is n type semiconductor.	С	O5	L2
PART-B			
Answer <i>five</i> questions by choosing one question from each unit ($5 \times 10 = 50 \text{ Ma}$)		СО	BL
UNIT-I			
2. a) Explain interference in thin film due to reflected light and			
,	6M (CO1	L2
b) Describe colors in thin film and write examples.	1M (CO1	L2
OR			
3. a) Explain construction and working of Nicol's prism to			
produce polarized light.	6M (CO1	L4
b) Describe polarization of light by reflection.	1M (CO1	L2
UNIT-II			
4. a) Calculate coordination number and packing fractions for	.		
	6M (
h) Derive the equation for interplanar spacing	1N/I	CC^2	1 2

Code: 23AHS25T

OR

5.	a)	Explain the crystal structure determination by powder method.	6M	CO2	1.4	
	h)					
	D)	Derive Bragg's law of X-ray diffraction.	4111	CO2	L2	
c		UNIT-III				
6.		Define types of polarizations in dielectrics and derive the expression for electronic polarizability.	10M	CO3	1.4	
		OR	TOIVI	CO3	LI	
7	٠,		CN 4			
1.	a)	Distinguish among dia, para and ferro magnetic materials.	6M		L4	
	b)		4M	CO3	L2	
		UNIT-IV				
8.	a)	Derive the equation for eigen values of a particle in one				
		dimensional potential box.	6M	CO4	L4	
	b)	Calculate the energies of first and second quantum states				
		of a particle confined to a potential box of length 2A ⁰ .	4M	CO4	L3	
		OR				
9.	a)	Derive the expression for electrical conductivity according				
		to quantum free electron theory.	6M	CO4	L5	
	b)	Write the differences between classical and quantum free				
		electron theory.	4M	CO4	L4	
		UNIT-V				
10.	a)	Derive the concentration of electrons in the conduction				
		band of intrinsic semiconductors.	6M	CO5	L5	
	b)	Write the expression for electrical conductivity in intrinsic				
		semiconductors.	4M	CO5	L5	
	OR					
11.	a)	Derive drift and diffusion currents?	6M	CO5	L2	
	b)	Deduce Einstein' equation.	4M	CO5	L2	
		*** End ***				

	ŀ	Hall Ticket Number :			
	Co	ode: 23A0221T	R-23		
		B.Tech. II Semester Regular Examinations July 2024			
		Basic Electrical & Electronics Engineering			
		(Common to CE, ME, CSE, CSE(DS) and AI&ML)			
	M	ax. Marks: 70 ********	ne: 3 Ho	urs	
	No	ote: 1. Question Paper consists of two parts (Part-1 and Part-2)			
		2. Use separate Answer booklets for Part-1 and Part-2			
		3. Part-1 & Part-2 of question paper consists of Part-A & Part-B			
		4. In Part-A, each question carries One mark.			
	D 4	5. Answer ALL the questions in Part-A and Part-B			
	PA	<u>.RT-1</u> PART-A			
		(Compulsory question)			
•	1. A	Answer all the following short answer questions $(5 \times 1 = 5M)$	CO	BL	
	a)	State the Kirchhoff's current law?	1	1	
	•	Define the term RMS value?	1	1	
	,	What is the basic principle of three phase induction motor?	2	-	
	,	Which type of instruments is used for measuring DC voltages a	_	•	
	u)	DC currents?	2	1	
	e)	What is the working principle of fuse?	3		
	-,	PART-B	J	·	
	Ar	nswer <i>any three</i> questions by choosing one question from each unit (3x10=	30 Mark	s)	
			Marks	CO	Βl
		UNIT-I			
		State and explain the Superposition theorem with an example?	10M	1	2
		OR			
		Explain the following terms with respect to alternating quantities			
		with the help of neat diagram			
		i) Phase and Phase difference ii) Frequency and period			
		iii) Resistance and impedance	10M	1	2
		UNIT-II			
		Explain the operating principle of DC generator and single			
		phase transformer with neat diagram?	10M	2	2
		OR			
		Describe the construction and working of Moving coil instruments?	10M	2	2
		UNIT-III			
		Briefly explain the operation of nuclear power station with a neat			
		sketch?	10M	3	2
		OR		-	_
,	a)	Explain the safety precautions to avoid electric shock?	5M	3	2
6				-	_

Code: 23A0221T

B.Tech. II Semester Regular Examinations July 2024

Basic Electrical & Electronics Engineering

(Common to CE, ME, CSE, CSE(DS) and AI&ML)

PART-2

PART-A

(Compulsory question)

1	Δηςι	wer all the following short answer questions (5 X 1 = 5M)	1	CO	BL			
,		w the forward characteristics of p-n junction diode.		CO1	2			
		fine the Zener effect in Zener diodes.		CO1	1			
c)		scribe the difference between intrinsic and extrinsic semicond	uctors.	CO2	1			
-		etch the circuit diagram of Full wave rectifier circuits.		CO2	1			
e)	Co	nvert (1001) ₂ into a decimal number.		CO2	3			
	A	PART-B	40.001	M =1 \				
	Ans	wer any three questions by choosing one question from each unit (3x	1 0=30 i Marks	Marks) CO	BL			
		UNIT-I	Viaiks	CO	DL			
2.		Sketch the input and output characteristics of common						
۷.		emitter transistor configuration and explain briefly.	10M	CO3				
		OR						
3.		Explain the VI characteristics of PN junction diode.	10M	CO3				
Ο.		UNIT-II	10111	000				
4.		Describe the working principle of a Zener diode. How is						
		it used for voltage regulation? Provide a circuit diagram						
		and explain its operation under different load conditions.	10M	CO4				
		OR						
5. With a neat circuit diagram and waveforms explain the								
		working of full wave bridge rectifier with C filter	10M	CO4				
		UNIT-III	IOIVI	004				
6	2)		5N/	CO5				
0.	a)	Design a full adder with two half adders	5M	CO3				
	b)	Describe the working of JK flip flop with help of its truth	5N/	COE				
		table	5M	CO5				
_	,	OR	-14	005				
1.		Verify the truth tables of various logic gates	5IVI	CO5				
	b)	Write a short notes on						
		i) Resistors	-8 4	005				
		ii) Counters	5M	CO5				
		*** Fnd ***						