	Hall Ticket Number :			
С	code: 23A0322T-A	R-23		
	B.Tech. II Semester Regular Examinations July 2024 Engineering Graphics (Computer Science and Engineering)			
N	1ax. Marks: 70	Time: 3 Ho	ours	
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 14 = 1$	70 Marks) Marks	со	BL
	UNIT-I			
1.	Draw an ellipse when the distance of its focus from its directris 50mm and eccentricity is 2/3. Also, draw a tangent and normal to the ellipse at a point 70mm away from the directrix.	а	1	3
	OR			
2.	Construct a vernier scale of 1:40 to read meters, decimete and centimeters and long enough to measure up to 6m. Mark distance of 5.76 m on it.		1	3
2	UNIT-II			
3.	Draw the projections of the following points on a common reference line keeping the distance between their projecto 30mm apart.			
	 (a) Point A is 20 mm below the H.P. and 50 mm in front of the V.F. (b) Point B is in the H.P. and 40 mm behind the V.P. (c) Point C is 20 mm in front of the V.P. and in the H.P. 	D.		
	 (c) Point C is 30 mm in front of the V.P. and in the H.P. (d) Point D is 50 mm above the H.P. and 30 mm behind the V.P. (e) Point E is 20 mm below the H.P. and 50 mm behind the V.I 	P.		
	(f) Point F is in the V.P. and 50 mm below the H.P.(g) Point G in both the H.P & the V.P.	14M	2	3
	OR			
4.	A 70 mm long line PQ is inclined at 45° to the V.P. Its end P lie on the H.P. and 15 mm in front of the V.P. The top view of the line measures 60 mm. Draw the projections of the line PQ are determine its inclination with the H.P.	ne	2	3
	UNIT-III			
5.	A rectangular plane of edges 35 mm and 70 mm is resting of an edge in the H.P. The surface is inclined to the H.P. such the the top view appears as a square. Draw its projections whe	at		
	the edge resting on the H.P. is inclined at 30° to the V.P.	14M	3	3
	OR			
6.	A pentagonal prism of base edge 30 mm and axis 60 mm res on an edge of its base in the H.P. Its axis is parallel to V.P. ar inclined at 45° to the H.P. Draw its projections.		3	3

Τ

Γ

Page **1** of **2**

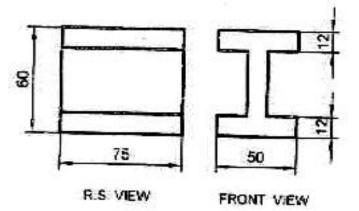
UNIT-IV

7. A cone, base 75 mm diameter and axis 80 mm long is resting on its base on the HP. It is cut by a section plane perpendicular to the V.P inclined at 45⁰ to the H.P and cutting the axis at a point 35 mm from the apex. Draw its front view, sectional top view, and the true shape of the section

14M 4 3

3

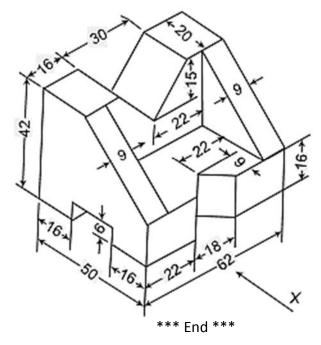
4


14M

OR

8. A square prism of side of base 40mm and axis 80mm long, is resting on its base on HP. such that, a rectangular face of it is parallel to VP. Draw the development of the prism

UNIT-V


9. Draw the isometric view to the following orthographic views

14M 5 3

OR

10. Draw the front view, top view and left side view of the object shown in Fig. (All dimensions are in mm).

14M 5 3

	Hall Ticket Number :		_	
(Code: 23A0322T-B	-23		
	B.Tech. II Semester Regular Examinations July 2024			
	Engineering Graphics			
	(Common to CSE & CSE(DS)) Max. Marks: 70 Time	: 3 Hou	irs	
	******	. 0 1100	15	
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 14 = 70$ Ma		~ ~	
	UNIT-I	Marks	CO	BL
1.	Draw an epicycloid of a circle of diameter 50 mm, which rolls outside			
	a circle of diameter 180 mm for one revolution. Also, draw a tangent			
	and a normal to the epicycloid at a point 135 mm from the center of			
	the directing circle.	14M	1	3
•	OR			
2.	Construct a scale of 1:40 to read meters, decimeters and			
	centimeters and long enough to measure up to 6 m. Mark a distance of 4.76 m on it.	14M	1	3
	UNIT-II			Ū
3.	Draw the projections of the following points on a common reference			
	line keeping the distance between their projectors 25 mm apart.			
	(a) Point A is 40 mm above the H.P. and 25 mm in front of the V.P.			
	(b) Point B is 40 mm above the H.P. and in the V.P.(c) Point C is 25 mm in front of the V.P. and in the H.P.			
	(d) Point D is 25 mm above the H.P. and 30 mm behind the V.P.			
	(e) Point E is in the H.P. and 30 mm behind the V.P.			
	(f) Point F is 40 mm below the H.P. and 30 mm behind the V.P.			
	(g) Point G is 25 mm below the H.P. and 40 mm in front of the V.P.	14M	2	3
	OR			
4.	A 70 mm long line PQ is inclined at 30° to the H.P. The end P is 15			
	mm in front of the V.P. and 25 mm above the H.P. The front view of the line measures 45 mm. Draw the projections of the line PQ and			
	determine its true angle of inclination with the V.P.	14M	2	3
	UNIT-III			
5.	The diagonals of a rhombus measure 100 mm and 40 mm. The			
	longer diagonal is inclined at 30° to H.P. with an end in H.P. and the			
	smaller diagonal is parallel to both the principal planes. Draw its projections.	14M	3	3
	OR		Ũ	U
6.	A hexagonal prism of base edge 30 mm and axis 70 mm has its axis			
	parallel to and 50 mm above the H.P. Its base is parallel to the V.P.			
	and an edge of the base is inclined at 45° to the H.P. Draw its projections.	14M	3	3
		I TIVI	5	J

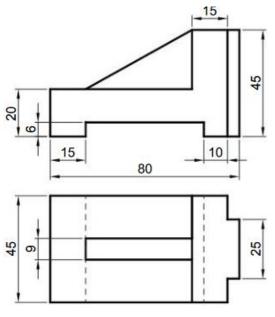
Code: 23A0322T-B

UNIT-IV

7. A square pyramid of base side 40 mm and axis 60 mm is resting on its base on the H.P. with a side of base parallel to the V.P. Draw its sectional views and true shape of the section, if it is cut by a section plane perpendicular to the V.P., bisecting the axis and is parallel to the H.P.

14M 4 3

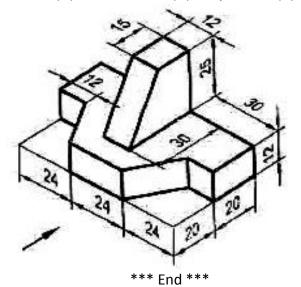
3


4

14M

OR

UNIT-V


- 8. A cylinder of base diameter 50 mm and axis 70 mm is resting on ground with its axis vertical. It is cut by a section plane perpendicular to the V.P., inclined at 45° to the H.P., passing through the top of a generator and cuts all the other generators. Draw the development of its lateral surface.
- 9. The front and the top views of an object are shown in Fig. Draw its isometric view.

14M 5 3

OR

10. Draw the following views for the object shown in figure. All dimensions are in mm. (a) Front view (b) Top view (c) Left side view.

14M 5 3

Hall Ticket Number :		
Code: 23AHS25T	3	
B.Tech. II Semester Regular Examinations July 2024		
Engineering Physics		
(Common to CE, ME, CSE, CSE(DS) and AI&ML)		
Max. Marks: 70 Time: 3	Hours	
Note: 1. Question Paper consists of two parts (Part-A and Part-B)		
2. In Part-A, each question carries Two marks.		
3. Answer ALL the questions in Part-A and Part-B PART-A		
(Compulsory question)		
1. Answer all the following short answer questions $(10 \times 2 = 20 \text{ M})$	СО	BL
a) Define interference and diffraction.	CO1	L1
b) What is resolving power of grating?	CO1	L2
 c) Define the terms lattice and basis. 	CO2	L1
d) What are miller indices?	CO2	L2
e) Write the relation between relative permittivity and susceptibility.	CO3	L4
f) Define the terms Magnetic permeability and susceptibility.	CO3	L1
g) What are matter waves?	CO4	L1
h) State Heisenberg uncertainity principle.	CO4	L1
i) What is Hall effect?	CO5	L2
j) What is n type semiconductor.	CO5	L2
$\frac{PART-B}{C}$	`	
Answer <i>five</i> questions by choosing one question from each unit (5 x 10 = 50 Marks Marks		BL
UNIT-I		
2. a) Explain interference in thin film due to reflected light and		
	CO1	L2
b) Describe colors in thin film and write examples. 4N	CO1	L2
OR		
3. a) Explain construction and working of Nicol's prism to		
produce polarized light. 6N	CO1	L4
b) Describe polarization of light by reflection. 4N	CO1	L2
UNIT–II		
4. a) Calculate coordination number and packing fractions for		
SC, BCC and FCC. 6N	CO2	L2
b) Derive the equation for interplanar spacing. 4N	CO2	L2

		•••			
5.	a)	Explain the crystal structure determination by powder method.	6M	CO2	14
	b)				
	D)	Derive Bragg's law of X-ray diffraction.	4111	CO2	L2
•		UNIT-III			
6.		Define types of polarizations in dielectrics and derive the			
		expression for electronic polarizability.	10M	CO3	L1
		OR			
7.	a)	Distinguish among dia, para and ferro magnetic materials.	6M	CO3	L4
	b)	Explain briefly about Hysterisis concept in ferromagnetism.	4M	CO3	L2
		UNIT–IV			
8.	a)	Derive the equation for eigen values of a particle in one			
		dimensional potential box.	6M	CO4	L4
	b)	Calculate the energies of first and second quantum states			
		of a particle confined to a potential box of length 2A ⁰ .	4M	CO4	L3
		OR			
9.	a)	Derive the expression for electrical conductivity according			
		to quantum free electron theory.	6M	CO4	L5
	b)	Write the differences between classical and quantum free			
		electron theory.	4M	CO4	L4
		UNIT–V			
10.	a)	Derive the concentration of electrons in the conduction			
		band of intrinsic semiconductors.	6M	CO5	L5
	b)	Write the expression for electrical conductivity in intrinsic			
		semiconductors.	4M	CO5	L5
		OR			
11.	a)	Derive drift and diffusion currents?	6M	CO5	L2
	b)	Deduce Einstein' equation.	4M	CO5	L2
	,	*** End ***			

Code: 23A0221T			
	R-23		
B.Tech. II Semester Regular Examinations July 2024			
Basic Electrical & Electronics Engineering			
(Common to CE, ME, CSE, CSE(DS) and AI&ML)			
Max. Marks: 70 Tin	ne: 3 Hou	Jrs	
Note: 1. Question Paper consists of two parts (Part-1 and Part-2)			
Use separate Answer booklets for Part-1 and Part-2			
3. Part-1 & Part-2 of question paper consists of Part-A & Part-B			
4. In Part-A, each question carries One mark.			
5. Answer ALL the questions in Part-A and Part-B PART-1			
PART-A			
(Compulsory question)			
1. Answer all the following short answer questions $(5 \times 1 = 5M)$	CO	BL	
a) State the Kirchhoff's current law?	1	1	
b) Define the term RMS value?	1	1	
c) What is the basic principle of three phase induction motor?	2	1	
d) Which type of instruments is used for measuring DC voltages a	nd		
DC currents?	2	1	
e) What is the working principle of fuse?	3	1	
PART-B			
Answer any three questions by choosing one question from each unit (3x10=		•	
	Marks	CO	
UNIT–I			
State and explain the Superposition theorem with an example? OR	10M	1	
Explain the following terms with respect to alternating quantities with the help of neat diagram			
with the help of neat diagram			
with the help of neat diagram i) Phase and Phase difference ii) Frequency and period	10M	1	
with the help of neat diagram i) Phase and Phase difference ii) Frequency and period iii) Resistance and impedance	10M	1	
with the help of neat diagram i) Phase and Phase difference ii) Frequency and period iii) Resistance and impedance UNIT–II	10M	1	
with the help of neat diagram i) Phase and Phase difference ii) Frequency and period iii) Resistance and impedance UNIT–II Explain the operating principle of DC generator and single		·	
with the help of neat diagram i) Phase and Phase difference ii) Frequency and period iii) Resistance and impedance UNIT–II	10M 10M	1	
with the help of neat diagram i) Phase and Phase difference ii) Frequency and period iii) Resistance and impedance UNIT–II Explain the operating principle of DC generator and single phase transformer with neat diagram?		·	
with the help of neat diagram i) Phase and Phase difference ii) Frequency and period iii) Resistance and impedance UNIT-II Explain the operating principle of DC generator and single phase transformer with neat diagram? OR Describe the construction and working of Moving coil instruments?	10M	2	
with the help of neat diagram i) Phase and Phase difference ii) Frequency and period iii) Resistance and impedance UNIT-II Explain the operating principle of DC generator and single phase transformer with neat diagram? OR Describe the construction and working of Moving coil instruments? UNIT-III	10M	2	
 with the help of neat diagram i) Phase and Phase difference ii) Frequency and period iii) Resistance and impedance UNIT–II Explain the operating principle of DC generator and single phase transformer with neat diagram? OR Describe the construction and working of Moving coil instruments? UNIT–III Briefly explain the operation of nuclear power station with a neat 	10M 10M	2	
with the help of neat diagram i) Phase and Phase difference ii) Frequency and period iii) Resistance and impedance UNIT-II Explain the operating principle of DC generator and single phase transformer with neat diagram? OR Describe the construction and working of Moving coil instruments? UNIT-III	10M	2	
with the help of neat diagram i) Phase and Phase difference ii) Frequency and period iii) Resistance and impedance UNIT-II Explain the operating principle of DC generator and single phase transformer with neat diagram? OR Describe the construction and working of Moving coil instruments? UNIT-III Briefly explain the operation of nuclear power station with a neat sketch? OR	10M 10M	2 2 3	
 with the help of neat diagram i) Phase and Phase difference ii) Frequency and period iii) Resistance and impedance UNIT-II Explain the operating principle of DC generator and single phase transformer with neat diagram? OR Describe the construction and working of Moving coil instruments? UNIT-III Briefly explain the operation of nuclear power station with a neat sketch? 	10M 10M 10M	2	

B.Tech. II Semester Regular Examinations July 2024

Basic Electrical & Electronics Engineering

(Common to CE, ME, CSE, CSE(DS) and AI&ML)

<u> PART-2</u>

PART-A

(Compulsory question)		
1. Answer all the following short answer questions $(5 \times 1 = 5M)$	СО	BI
a) Draw the forward characteristics of p-n junction diode.	CO1	2
b) Define the Zener effect in Zener diodes.	CO1	1
c) Describe the difference between intrinsic and extrinsic semiconductors.	CO1	1
d) Sketch the circuit diagram of Full wave rectifier circuits.		
	CO2	1
e) Convert (1001) ₂ into a decimal number. PART-B	CO2	3
Answer any three questions by choosing one question from each unit (3x10=30 M	larks)	
Marks	co	BL
UNIT–I		
2. Sketch the input and output characteristics of common		
emitter transistor configuration and explain briefly. 10M	CO3	
OR		
3. Explain the VI characteristics of PN junction diode. 10M	CO3	
UNIT–II		
4. Describe the working principle of a Zener diode. How is		
it used for voltage regulation? Provide a circuit diagram		
and explain its operation under different load conditions. 10M	CO4	
OR		
5. With a neat circuit diagram and waveforms explain the		
working of full wave bridge rectifier with C filter	CO4	
	004	
6. a) Design a full adder with two half adders 5M	CO5	
	005	
 b) Describe the working of JK flip flop with help of its truth table 5M 	CO5	
OR	000	
	CO5	
b) Write a short notes on		
i) Resistors ii) Counters 5M	CO5	
	000	

	Hall	Ticket Number :																
	Code	e: 23A0521T								<u> </u>		<u></u>			R-23	3		
	Cour	B.Tecl	n. S	Sem	neste	er Re	egul	ar E	xan	nina	tion	s Jul	y 202	24				
					D	atc	a Sti	ruc	ture	es			-					
	May	(Comr	mon	to (CSE,	AI&[DS, C	CSE(/	4I) <i>,</i> (CSE(DS)	and	AI&N		ime: 3		ure	
	Max	Marks: 70					****	* * * * *	k					I	ime. s	по	UIS	
	Note:	1. Question Pape				•	•			nd Pa	rt-B))						
		 In Part-A, each Answer ALL th 	•							2								
		3. Answer ALL (ie qu	estic	115 11	rai		RT-A		5								
					(C	omp	ulso			on)								
1.7	Answ	er <i>all</i> the follow	ving	sho	rt ar	ารพ	er qu	Jest	ions	s (10 >	(2=	= 20N	1)		(CO	BL
a)	Wh	at is non-linear	data	a sti	ructi	re?)										1	L1
b)	Giv	e examples of A	Abst	rac	t dat	a ty	pes	?									1	L1
C)) Hov	v is the end of a	a sir	ngly	link	ed li	ist re	epre	sen	ted?)						2	L2
d)	Des	scribe the struct	ture	of a	a no	de ir	n a [Doul	ble l	inke	ed lis	st.					2	L1
e)) Hov	v a Circular que	eue	is d	iffer	enti	from	Qu	eue	?							3	L2
f)) Wri	te a short note	of a	pply	ving	stac	ck or	n rev	vers	ing	list.						3	L3
g)	Wri	te a recursive	func	tior	for	pre	-ord	ler t	rave	ersa	l in a	a B	ST.				4	L2
h)	Def	ine a graph. Ho	ow d	oes	it d	iffer	fron	n otl	her	data	stru	uctu	res li	ke t	rees?		4	L2
i)	Wh	at is a hash fun	ctio	n?													5	L1
j)	Wh	at is a collision	in th	ne c	onte	ext c	of ha	shir	ng?								5	L1
		A		b al				<u>RT-B</u>	f		.		F 10	- 50	Maulia			
		Answer <i>five</i> quest	lons	ру сі	noosi	ng o	ne qu	estic	on tro	om ea	acn u	nit (5 X 10	= 50			со	BL
							UN	IIT-I										
2	2. a)	Explain the ke	әу с	hara	acte	risti	cs t	hat	dist	ingu	iish	an	ADT	fror	m			
		a data structu	re.												5	M	1	L2
	b)	Write Time C	-	-	-	and	Sp	ace	Сс	mpl	exit	y o	f diff	erer	nt			
		linear data str	uctu	ires	?										5	M	1	L1
							OR											
3	5.	Explain the S																
		primary func								•			ation	S (
		these functior	is us	sing) an	arra	-			opro	ach	•			10	IVI	1	L3
Λ	2)	Write the pr		lurc	to	ind		IT-I		<u> </u>	t th		ogin	nin	r			
4	. aj	Write the promiddle, and e								c a	i ii		Jegin	i ili iç		M	2	L2
	b)	"Node structu				•				d liq	st co	omr	ared	to			2	L
	5)	singly linked l						•				- up		.0		М	2	L5
		3,7	,		,	,			-						•		-	-0

Code: 23A0521T

OR

5.	a)			
		list. What is the time complexity of this operation?	5M	2 L1
	b)	Explain the Applications of LinkedList?	5M	2 L2
		UNIT-III		
6.	a)	What is Queue? Explain properties and different applications of it.	5M	3 L2
	b)	Describe and write a program to implement queue using LinkedList and its operations?	5M	3 L2
		OR		
7.	a)	Apply the stack in expression evaluation with an example.	4M	3 L3
1.			-111	3 L3
	b)	What is De-queue? Illustrate the operations and applications of it.	6M	0 1 0
			OIVI	3 L2
0	~)	UNIT-IV		
ð.	a)	Define a tree data structure. How is it different from other	CM	
		data structures like arrays or linked lists?	6M	4 L2
	b)	Explain how to search for a node in a binary tree.	4M	4 L2
		OR		
9.	a)	Describe the process of insert and delete operations on		
		Binary Search tree.	4M	4 L2
	b)	Use the following binary search tree and find pre-order, in-		
	,	order and post-order traversal of this tree.		
		(M)		
		G T		
		D K R W		
		A H L V		
		U	6M	4 L3
		UNIT-V		. 20
10.		Describe how hashing can be applied to generate unique		
		identifiers and provide examples of its applications.	10M	5 L3
		OR		0 20
11	2)			
11.	a)	Given a set of keys {23, 12, 34, 54, 72, 15, 65}, insert them		
		into a hash table of size 10 using chaining. Show the resulting hash table.	5M	E 10
	۲	-		5 L3
	D)	Explain the process of searching for a key in a hash table.	5M	5 L2
		*** End ***		

Hall Ticket Number :									
R-23									
Code: 23AHS21T B.Tech. II Semester Regular Examinations July 2024									
Differential Equations and Vector Calculus									
(Common to All Branches)									
Max. Marks: 70 Time: 3 H	OUrs								
Note: 1. Question Paper consists of two parts (Part-A and Part-B)									
 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 									
PART-A									
(Compulsory question)	~~	Ξ.							
1. Answer all the following short answer questions (10 X 2 = 20M)	CO	BL							
a) Solve $(2^r \text{ the follow})_{ag}$ short answer c dx + (x + 2y + 1) = 0.	CO1	L3							
b) State Newton's Law of Cooling.	CO1	L1							
c) Solve $\begin{pmatrix} z & z & z & z & z & z & z & z & z & z $	CO2	L3							
d) Find Pl of $\binom{D^2 + 4D}{D^2 + 5D} = 0$ e) Find Pl of $\binom{D^2 + 5D}{D^2 + 5D} = 0$ h) Find Phe $(\frac{D^2 + 5D}{D^2 + 5D} + 6)y = \frac{3x}{2}$ h) hy eliminating arbitrary constants	CO2	L3							
Form the partial differential equatic a, b from $z = ax + by + a^2 + b^2$.	CO3	L3							
f) Solve $\int_{p}^{p} \sqrt{\frac{p}{z} = \frac{d}{ax} + \frac{by}{y} + \frac{a^2}{a^2}} \sqrt{\frac{p}{x} + q} \sqrt{y} = \sqrt{z}$.	CO3	L3							
g) Find grad f, where $f = \sqrt{z}$.	CO4	L1							
h) Show that f_{IB} solenoidal, where $f_{IB}^{2z} + 3_{y2z2} + 3_{x2z2} + 3_{x2z2} + 3_{x2y2} + 3_{x2y2} + 3_{y2z2} +$	CO4	L1							
i) Evaluate the line integral $\int_{-\infty}^{\infty} (\frac{\ker^{2z} + x_{2}z^{2}\hat{i} + z_{2}z^{2}\hat{j} + z_$	CO5	L3							
j) State Green's theorem	CO5	L1							
PART-B									
Answer <i>five</i> questions by choosing one question from each unit (5 x 10 = 50 Mark	is)								
Marks	CO	BL							
ÚNIT-I	CO1								
	CO1	L3							
OR									
3. a) Solve $xy(1 + xy^2) \frac{dy}{dx} = 1$ 5M	CO1	L3							
3. a) Solve $\frac{(4xy + 3y)}{xy(1 + xy^2)\frac{dy}{dx} = 1}$ b) If the temperat $\frac{y^2}{dy}\frac{dy}{dx} = t_{he}$ air i 30_{o} the substance cools from 100_{o} re of $70^{o}C$ in $\frac{s}{15}$ minutes. Find when the temperature will be $40^{o}C$. 5M									
cools from $100_{C}^{\text{ore of } 70^{\circ}C}$ in s minutes. Find when the									
temperature will be 40^{0C} . 5M	CO1	L3							

		Code	: 23AHS	521T	
4.		Solve $\binom{D}{D - 2D^2y} = e^{\binom{D}{e^{2x} + sin^2x + x}}$	10M	CO2	L3
5.		Solve t he simultaneous equations $\frac{q_x}{q_t} + 2y + s_{int} = 0$, $\frac{dy}{dt} - 2_x - cost = 0$, given that $x = 0$ and $y = 1$ when $t = 0$.	10M	CO2	L3
6.	a)	UNIT-III F _{brm t} he _{bartial} diff _e ren _{iti} al equation by eliminating arbitrary constants <i>a, b</i> and <i>c</i> from			
		$\binom{x-a}{2} + \binom{y-b}{2} + \frac{z}{c} = \frac{c}{c}$	5M	CO3	L3
	D)	Form the partial differential equation by eliminating arbitrary functions <i>f</i> and <i>g</i> from $z = f(y + 2x) + g(y - 3x)$.	5M	CO3	L3
7.		Solve $\begin{pmatrix} y & z \\ x^2 & y^2 \end{pmatrix} p + \begin{pmatrix} y^2 & y^2 \end{pmatrix} = z^2 - xy$.	10M	CO3	L3
8.		UNIT-IV If $F = \nabla(x^3 + y^3 + z^3) = 3_{xyz}$ find curl(F). Find the directional derivative of $\frac{T-IV}{Id \ c \ T _2F}$. (1,-2,-1) in the direction of the vector $2i$ -j-2k.		CO4 CO4	
		OR			-
9.	a)	between the surfaces $\sum_{x=x^2+y^2-13}^{2^{1-j-2}k} = 6 \text{ and}$ Find the angle $z = x^2 + y^2 - 13$ at (2,1,2).	5M	CO4	L3
	0)	$F_{nd the \ \ s o}^{= x^{2} + i} alu(\stackrel{13}{=} f a, b, c f a, $	5M	CO4	L3
10.		UNIT-V Find the work down by a force $\frac{ \mathbf{N} \mathbf{T}-\mathbf{V} ^2}{ \mathbf{F} ^2}$ (2 along the straight line from $(0, 6, 0)$ to $(2, 1, 3)$.			
11.		Verify reen's the Gi sorem for $\int_C (xy + \frac{2}{y^2}) dx + x^2 dy$, where <i>c</i> is bounded by $y = x$ and $y = x^2$	10M	CO5	L3