	Hall Ticket Number:														7
	Code: 23AHS24T							J.		J.	J		R-2	3	
	B.Tec	h. II Se	eme	ester	Regu	lar E	xam	nina [.]	tions	s Jul	y 202	24			
		10000			Che		•		-l CC	- / \ 1	١,				
	Max. Marks: 70	(Com	irrior	n io E	EE, EC	,E, A	I&D3	and	ı Cs	E(AI))	-	Time: 3	Hours	;
	Note 4 Overthe Dans		•	- ()		****			D\						
	Note: 1. Question Pape 2. In Part-A, each							nd Pa	irt-B))					
	3. Answer ALL th	•						3							
						RT-A	•								
1	Answer all the follo	wina		(Com	•			-	(10	X 2	= 20	M)		СО	BL
) Calculate the bor	•				-			•	/\ _	_0	,			L3
) Define and ²				., 9		0.00								L2
) Write two applica	ations	ofs	supe	con	duct	ors.							CO2	
) What are p-type			•					Sive	exa	ample	es.			L1
) Describe the con		• •								•				L2
) Draw the constru	-					•								 L4
Ç) Differentiate betv	veen	ther	rmos	ets a	nd tl	hern	nop	lasti	cs				CO4	L2
h	, <u>.</u>							•						CO4	L1
) What is the impo	rtanc	e of	f IR s	pectr	OSC	opy?	?						CO5	L1
) Describe the bas	ic pri	ncip	ole of	chro	mate	ogra	aphy	/ .					CO5	L2
						RT-B	-								
	Answer five questi	ions by	cho cho	osing	one qu	estio	n fro	m ea	ch u	nit (:	5 x 10	= 50) Marks)	
													Marks	CO	BL
		_				NIT-					_				
2.										•			101/4	004	1.4
	molecular ene	igy ie	ver	uiagi		0R	Z all	iu C	O II	IOIE	cuies	•	10M	CO1	L4
3.	Derive Schro	ndina	or v	W2V6			าท	and	ים ו	vnla	in tl	hΔ			
O,	significance of	_	nd	2	. 04	aati	J11	aria		хрій			10M	CO1	L3
	J				UN	IIT-I	I								
4.		• •				•									
	detail. List o	ut the	eir	signi	fican	t ap	plic	atio	ns	in v	vario	us	4054		
	fields.												10M	CO2	L2
						OR									

Code: 23AHS24T

5. Explain the types and properties of supercapacitors. Discuss their practical applications in various fields of 10M CO₂ L₂ engineering. **UNIT-III** Derive Nernst equation and explain its significance in 6. calculating cell potentials. 10M co₃ L₃ OR 7. a) Explain the principle and applications of Polymer Electrolyte Membrane Fuel cell (PEMFC). 5M CO3 L2 b) What are the potentiometric sensors? Explain their practical applications with suitable examples. 5M CO₃ L₁ **UNIT-IV** 8. a) Explain chain growth and step growth polymerization techniques with suitable examples. 5M CO4 L2 b) Give an account of the preparation and properties of elastomers. 5M CO4 L4 OR 9. Explain the mechanism of conduction in conducting polymers and discuss their practical applications. 10M CO₄ L₂ **UNIT-V** 10. Describe various electronic transitions induced by UV-Visible radiation and explain the significance of Beer-Lambert's law in UV-Vis spectroscopy 10M CO₅ L₂ OR 11. Draw the setup of HPLC chromatography and write a detailed account of its working mechanism. 10M CO₅ L₄ *** End ***

Hall Ticket Number :	R-23	
Code: 23AHS22T		
B.Tech. II Semester Regular Examinations July 20	24	
Communicative English (Common to EEE, ECE, ALR DS and CSE(ALL))		
(Common to EEE, ECE, AI&DS and CSE(AI)) Max. Marks: 70	Time: 3 Ho	ours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)		
 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 		
PART-A		
(Compulsory question)		
1. Answer all the following short answer questions $(10 \text{ X } 2 = 20 \text{ M})$	CO	BL
a) What did Della do with her hair and why?	CO1	L2
b) What kind of landscape is described in the first three star	nzas in	
the poem "The Book'?	CO1	L2
c) Write the meanings of the following words:		
i. coot ii. evaluate iii. deliberate iv. squadron	CO2	L2
d) Briefly describe two of business ventures of Elon Musk.	CO1	L4
e) Explain Note-making.	CO3	L2
f) What is a Chronological Resume?	CO3	L2
g) What announcement by the National Peace Counci	does	
Elizabeth show her brother?	CO1	L2
h) List out types of Essays.	CO3	L2
i) What is self-esteem?	CO3	L2
j) Define technical jargon and provide any four examples. <u>PART-B</u>	CO2	! L1
Answer <i>five</i> questions by choosing one question from each unit (5 x 10		00
UNIT-I	Marks	СО
a) How do Jim's and Della's actions symbolise the streng	th of	
their love for each other.		CO1
		COT
b) Write a note on the different ways the financial situation of		
couple in the story "The Gift of the Magi".	SIVI	CO1
OR		
a) Write a Formal Dialogue between two officials in an	office	
"Introducing each Other".	5M	CO1
b) Write the meaning and one example for the following	Root	
Words: i.bio ii.extra iii. gram iv. glot v. neo vi. meg	ga 5M	CO3
UNIT-II		
a) Write an elaborate paragraph on "Superstitions".	5M	CO3
b) Fill in the blanks with suitable Prepositions:	5M	CO3
i. He lives 19 Tower Road.		
ii. I will arrive eight o' clock.		
iii. I have known her last year.		
iv. Missing the bus is no excuse being late.		
v. People often make fun what they do not underst		

vi. We will take a survey _____ the participants.

Code: 23AHS22T

OR

5.		How has the poet described landscape, flowers, plants and colours in the poem? How does it make you feel as a reader? Substantiate your answer with examples form the poem.	10M	CO1	12
		UNIT-III	TOIVI	COT	LS
6.		In what way has Musk proved to be a visionary leader of			
		cutting-edge technology? Discuss with relevant examples.	10M	CO1	L4
		OR			
7.	a)	Fill in the blanks with suitable <i>verb</i> forms:	5M	CO3	L3
		i. Keep (guess) the answers till you get them right.			
		ii. Were you (pay) attention to what was being said?			
		iii. I have (read) many books in the last one year.			
		iv. How have you been?(do)			
		v. Asif (teach) for six years at the computer institute by the time his father retires.			
		vi. Raman (live) in Chennai for 10 years.			
	b)	Fill in the blanks with Collocation words:	5M	CO4	L4
	٠,	i. We couldn't take up another assignment as we were			
		ii. My work hours are flexible. I don't need to begin at a			
		iii. John asked his boss, 'I know you're busy, but can you			
		for me this week? I need to discuss something with you'.			
		iv. Tsering was so eager to finish that he got done in			
		v. We have before the train arrives.			
		vi. Vishnu has been through some			
		UNIT-IV			
8.	a)	Describe how the children found an exciting way to play with			
		their new to play with their new non-violent toys.	5M	CO1	L4
	b)	Write a letter to the Principal to organize a workshop on A I to			
		resolve the A I future doubts.	5M	CO4	L3
0	-1	OR			
9.	a)	Do you think Harvey and Elizabeth's experiment failed?	5N/	004	
	ل ا	Justify your answer.	Sivi	CO1	L4
	D)	Prepare a resume for applying a job as software developer in IT industry.	51/1	004	1.0
		UNIT-V	JIVI	CO4	L3
10	a)	What are the different ways in which Interpersonal			
10.	uj	Communication helps improve everyday life?	5M	CO3	L1
	b)	Write six to eight presentation tips in making a presentation.	5M	CO3	L2
		OR			
11.		Write an Essay on the topic: "The impact of social media on	4084		
		youth". *** End ***	10M	CO3	L3
		EIIU · · ·			

	Hall	Ticket Number :														
	Code	e: 23A0521T												R-23		
		B.Tech.	l Sem			_				tions	S Jul	y 202	4			
		10	- 1 - 6			te c				DC)		A 1.0. A 4				
	Max.	(Commc . Marks: 70	n to C	∠SE,	AI&I	JS, C	.SE(≀	(1), (~2F(DS) (ana	AI&M	-	ie: 3 Ho	urs	

	Note:	 Question Paper co In Part-A, each qu 			•	`			nd Pa	rt-B)						
		3. Answer ALL the c							3							
							RT-A									
1 /	Λρονν	or all the followin	a cho	•	-	ulso	-		•	10 V	′ O _	- 201/	1\		CO	DI
		er <i>all</i> the following	_				Jesi	IOHS	• (10 /	~	= ZUIV	ı <i>)</i>	'		
		at is non-linear da					2								1	L1
b)		e examples of Ab			•	•		000	tod?)					1	L1
d)		v is the end of a s	• •				•				·+					L2
,		scribe the structur								iu iis	ol.				_	L1
e) f)		v a Circular queud								lict						L2
,		te a short note of							_		2 R	2T				L3
g)		te a recursive fur			•								ko tro	002	-	L2
h) i)		ine a graph. How at is a hash functi		it u	IIIEI	11011	ii Oti	ICI '	uata	Suc	JClu	ies iii	KE LIE	CO!	-	L2
.,				onto	vt o	of ha	chir	va2							5	L1
J)	VVII	at is a collision in	li ie c	Onte	, XI U		ST-B	ıy :							5	L1
		Answer five question	s by cl	noosi	ng oi			n fro	om ea	ach u	nit (!	5 x 10 :	= 50 Ma	arks)		
						111	UT 1							Marks	CC) BL
2	. a)	Explain the key	char	acta	rieti		IIT-I hat		inaı	iieh	an	ΔΠΤ	from			
_	a)	a data structure		acie	11311	US I	ιιαι	uist	irigu	11311	aii i	וטה	110111	5M	1	L2
	b)	Write Time Cor		city	and	Sn	ace	Cc	mpl	exit	v of	diffe	erent	0	'	
	۵)	linear data struc	-	-	arra	Οp	aoo		,,,,b,	07414	<i>y</i> 0.	a	31 3110	5M	1	L1
						OR										
3	.	Explain the Stad	ck Ab	stra	ct D	ata	Typ	oe (ADT	-) ar	nd d	liscus	ss its			
		primary function						•		•						
		these functions	using	an	arra	ay-b	ase	d ap	opro	ach				10M	1	L3
							IT-II									
4	. a)	Write the proce							e a	t th	e b	egini	ning,	O 1 4		_
	L, \	middle, and end			•				al 1º	.1 -		ا. د سم	4	6M	2	2 L2
	D)	"Node structure singly linked list					•		a lis	ST CC	mp	ared	to a	4M	_	
		Singly linked list	, Jus	ury	you	ıall	SWE	ž1 :						4111	2	2 L5

Code: 23A0521T

OR

5.	a)	Describe the process to search for a value in a singly linked list. What is the time complexity of this operation?	5M	2	L1
	h)	·	5M		
	D)	Explain the Applications of LinkedList? UNIT-III	JIVI	2	L2
c	۵)				
ъ.	a)	What is Queue? Explain properties and different applications of it.	5M	3	L2
	b)	Describe and write a program to implement queue using LinkedList and its operations?	5M	3	L2
		OR			
7.	a)	Apply the stack in expression evaluation with an example.	4M	3	L3
	•	What is De-queue? Illustrate the operations and applications			
	,	of it.	6M	3	L2
		UNIT-IV			
8.	a)	Define a tree data structure. How is it different from other			
	/	data structures like arrays or linked lists?	6M	4	L2
	b)	Explain how to search for a node in a binary tree.	4M	4	L2
	,	OR		•	
۵	a)	Describe the process of insert and delete operations on			
٦.	aj	Binary Search tree.	4M	1	L2
	h)	•	7171	4	LZ
	D)	Use the following binary search tree and find pre-order, in- order and post-order traversal of this tree.			
		(M)			
		G T			
		(D) (K) (R) (W)			
		A H D V			
			6M	4	1.0
		UNIT-V	Olvi	4	L3
10.		Describe how hashing can be applied to generate unique			
10.		identifiers and provide examples of its applications.	10M	5	L3
		OR	10111	5	LJ
11	٥,				
11.	a)	Given a set of keys {23, 12, 34, 54, 72, 15, 65}, insert them			
		into a hash table of size 10 using chaining. Show the	5M	_	
		resulting hash table.		5	L3
	b)	Explain the process of searching for a key in a hash table. *** End ***	5M	5	L2

	На	all Ticket Number :			
	Cod	le: 23AHS21T	R-23		
		B.Tech. Il Semester Regular Examinations July 2024 Differential Equations and Vector Calculus (Common to All Branches)			
	Ma	x. Marks: 70	Time: 3 H	ours	
	Note	******** e: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks . 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question)			
1 A	nsw	er all the following short answer questions (10 X 2 = 20M)		СО	BL
		Te $(2^r \text{ the follow)}_{x + y + 1}$ as short answer $(2^r \text{ the follow)}_{x + y + 1} = 0$.		CO1	L3
b)	Stat	e Newton's Law of Cooling.		CO1	_0 L1
,		0 Now for a coming. $0 (lewton; s. Law of code)$ $0 (lewton; s. Law of code)$ $0 (lewton; s. Law of code)$		CO2	L3
d)	Find	$ P \text{ of } \begin{cases} -4D + 4y = 6 \\ -2 + 4D + 4y = 6 \end{cases}$ $ P \text{ of } \begin{cases} -4D + 4y = 6 \\ -2 + 5D + 6y = 63x \\ -2 + 5D + 6y = 63x \\ -2 + 5D + 6y = 63x \end{cases}$		CO2	L3
		Phe $(D^2 + 5D + 6)y = 63x$ in by eliminating arbitrary co	nnstants	002	_0
,	Forr	the partial differential equality from $z = ax + by + a^2 + b^2$.	Jiiotanto	CO3	L3
f)	Solv	th partial differential $Z = ax + by + a^2$ $P = \sqrt{x} + q\sqrt{y} = \sqrt{z}.$		CO3	L3
g)	Find	grad f, where $= \frac{\sqrt{z}}{\sqrt{z}} + \frac{z^2 + b^2}{\sqrt{z}}$		CO4	L1
h)	Shov	w that $f = 3$ solenoidal, where $f = 3$ $2 \times 2 \times 2 \times 2 \times 3 \times 2 \times 2 \times 3 \times 2 \times 2 \times $	12 R	CO4	L1
i)	Eva	w that f is solenoidal, where $f = 3 \frac{x^{3} + 3}{x^{2} + 2} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}$	C is the	CO5	L3
	_	_		005	1.4
J)	Sia	te Green's theorem PART-B		CO5	L1
	Ar	nswer <i>five</i> questions by choosing one question from each unit (5 x 10) = 50 Mark	s)	
			Marks	CO	BL
_	,	UNIT-I			
2.	a)	Solve $\frac{dy}{dx} + \frac{\text{UNIT-I}}{ytanx} = y^3 secx.$ Solve $(4^2 + ytan^2 = y^3 secx.$	5M	CO1	L3
	b)	Solve $\left(4\frac{2}{4} + \frac{y \tan x}{xy} = \frac{y^3}{3 \sec x}\right)$.	5M	CO1	L3
		OR			
3.	a)	Solve $\frac{dy}{dy} = 1$	5M	001	
	h)	Solve $\frac{(4xy + 3y)}{xy(1 + xy^2)} \frac{dy}{dx} = 1$ If the temperat $\frac{y}{u} = \frac{1}{u}$ the air i $\frac{30}{u}$ the substant cools from $\frac{1000}{c}$ re of $\frac{700}{c}$ in $\frac{1}{15}$ minutes. Find when the substant $\frac{1}{15}$ respectively.	אוע	CO1	LJ
	IJ)	cools from 100° re of 70° C in similar and Find when the	ne		
		temperature will be 40^{0C} .	5M	CO1	L3

Code: 23AHS21T

UNIT-II

4. Solve $\binom{D-2}{2} = \frac{1}{2} \binom{DNIT-II}{2} \binom{DNIT-II}{2}$

10M CO₂ L₃

OR

5. Solve the simultaneous equations $\frac{a_x}{at} + 2y + \frac{s}{2int} = 0$, $\frac{dy}{dt} - 2x - cost = 0$, given that x = 0 and y = 1 when t = 0.

10M CO₂ L₃

UNIT-III

6. a) F_{brm} the bartial differential equation by eliminating arbitrary constants a, b and c from

$${\binom{x-a)_2}{\text{orm t}}} + {\binom{y-b)_2}{\text{orticl}}} + {\binom{z_2}{\text{orticl}}} = {\binom{z_2}{\text{orticl}}}$$

5M co₃ L₃

b) Form the partial differential equation by eliminating arbitrary functions f and g from z = f(y + 2x) + g(y - 3x).

5M co₃ L₃

OR

10M CO3 L3

UNIT-IV

8. a) If $\mathbf{p} = \nabla(\mathbf{x}^3 + \mathbf{y}^3 + \mathbf{z}^3 - 3\mathbf{z}\mathbf{y}\mathbf{z})$ find $\mathbf{curl}(\mathbf{p})$.

5M CO4 L3

- b) Find the directional derivative of $\frac{\mathbf{T-iV}}{|\mathbf{r}|} = \frac{1}{|\mathbf{r}|} = \frac{1}{$
- 5M CO4 L3

OR

9. a) between the surfaces $\lim_{z = x^2 + y^2 - 13} \text{ at (2,1,2)}.$

5M CO4 L3

b) $F_{\text{nd the}}^{= x^2 + 7} \text{alu}(\frac{13}{250} \text{ f } a, b, c)$

if $\vec{F} = (x+y+az)\hat{\imath} + (bx+2y-z)\hat{\jmath} + (x+cy+2z)\hat{k}$ is irrotational

5M CO4 L3

UNIT-V

10. Find the work down by a force $\frac{1}{\sum_{i=1}^{\infty} (2^i)^2}$ along the straight line from (0, 0, 0) to (2, 1, 3).

OR

11. Verify the Gi seen's the orem for $\int_C (xy + \frac{2}{y^2}) dx + \frac{2}{x^2-dy}$, where C is bounded by y = x and $y = x^2$.

*** En ***

*** End ***

Hall Ticket Number :			
	R-23		
Code: 23A0121T B.Tech. II Semester Regular Examinations July 2024			
Basic Civil & Mechanical Engineering			
(Common to EEE, ECE, AI&DS and CSE(AI)) Max. Marks: 70	ime: 3 I	Jours	
**************************************	IIII C . 3 I	10013	
Note: 1. Question Paper consists of two parts (Part-1 and Part-2)			
 Use separate Answer booklets for Part-1 and Part-2 Part-1 & Part-2 of question paper consists of Part-A & Part-B 			
4. In Part-A, each question carries One marks.			
5. Answer ALL the questions in Part-A and Part-B			
<u>PART-1</u> PART-A			
(Compulsory question)			
1. Answer all the following short answer questions ($5 \times 1 = 5M$)	CO	BL	
 a) Mention any four construction materials. 	CO1	L2	
b) Define- Porosity.	CO1	L2	
c) What is meant by estimation?	CO2	L2	
d) Write the use of levelling instruments.	CO2	L2	
e) What is Rigid pavement?	CO3	L2	
$\frac{PART-B}{Answer five \text{ questions by choosing one question from each unit } (3 \times 10 = 30)$	Marke)	
Answer five questions by choosing one question from each unit (5 x 10 - 30	Marks	co	BL
UNIT-I			
What are the ingredients of cement concrete? Explain the	4014		
process of making various types of concrete in detail.	10M	CO1	L3
OR			
Discuss the scope of Water resources Engineering and Environmental Engineering in detail.	10M	CO1	LO
UNIT-II	IOIVI	COT	LZ
Explain the following with suitable example.			
(i) Angular measurements. (ii)Contour mapping.	10M	CO2	13
OR			
Explain the following with respect to a room of dimensions			
3metres x 3metres x 3metres.			
(i) Detailed estimate. (ii) Abstract estimate.	10M	CO2	L3
UNIT-III			
Explain the applications of Rigid pavements and Flexible	4014		
pavements with examples.	10M	CO3	L3
OR Explain the following with suitable example. (i) Pain water			
Explain the following with suitable example. (i) Rain water harvesting. (ii) Types of dams and Reservoirs.	10M	CO3	12
i.a. 133tilig. (ii) Typos of daille and 1000010010.	. 0171	000	

2.

3.

4.

5.

6.

7.

Code: 23A0121T

PART-2

PART-A

(Compulsory question)

	1. <i>F</i>	Answer all the following short answer questions $(5 \times 1 = 5M)$	CO	BL	
	a)	Write industrial applications of non-ferrous metals.	4	4 1	
	b)	What is the use of riser in a casting pattern?	į	5 1	
	c)	Write the full form of CNC.	į	5 1	
	d)	Draw the p-V diagram of an Otto cycle.	į	5 1	
	e)	Write any two applications of robotics?	(5 1	
		PART-B			
		Answer <i>five</i> questions by choosing one question from each unit $(3 \times 10 = 3 \times 10)$		-	
		UNIT-I	Marks	CO	BL
2.	a)	Briefly explain the role of a mechanical engineer in the			
		following sectors: (i) Automotive and (ii) Marine.	6M	4	1
	b)	What is the role of a mechanical engineering in aerospace			
		industry?	4M	4	1
		OR			
3.	a)	What are the advantages and limitations of using composite			
		materials in aerospace industry compared to conventional			
		materials?	6M	4	1
	b)	Name any two smart materials and describe their applications.	4M	4	1
1	٥)	UNIT-II Priofly explain the costing process. Why it is required?	en 1	_	•
4.	a)	Briefly explain the casting process. Why it is required?	6M	5	3
	b)	Briefly explain steps/stages involve in 3D printing.	4M	5	2
		OR			
5.	a)	With a neat T-s diagram, explain the working principle of a			
		vapour compression refrigeration cycle. Write the formula for	 N 4		
		its COP.	5M	5	2
	b)		5M	5	2
_		UNIT-III D	01.4		
6.	,	With a neat sketch explain the working of a Diesel power plant.	6M	6	3
	b)	What are the challenges in running hydro power plants?	4M	6	2
		OR			
7.	a)	What are the different power transmission devices? Explain			
		working of belt drive transmission with a neat sketch.	5M	6	2
	b)	What are the basic laws of robotics? Explain.	5M	6	2
		*** End ***			