	Hall	Ticket Number :																
	Code	e: 23A0521T								<u> </u>		<u></u>			R-23	3		
	Cour	B.Tecl	n. S	Sem	neste	er Re	egul	ar E	xan	nina	tion	s Jul	y 202	24				
					D	atc	a Sti	ruc	ture	es			-					
	May	(Comr	mon	to (CSE,	AI&[DS, C	CSE(/	4I) <i>,</i> (CSE(DS)	and	AI&N		ime: 3		ure	
	Max	Marks: 70					****	* * * * *	k					I	ime. s	по	UIS	
	Note:	1. Question Pape				•	•			nd Pa	rt-B))						
		 In Part-A, each Answer ALL th 	•							2								
		3. Answer ALL (ie qu	estic	115 11	rai		RT-A		5								
					(C	omp	ulso			on)								
1.7	Answ	er <i>all</i> the follow	ving	sho	rt ar	ารพ	er qu	Jest	ions	s (10 >	(2=	= 20N	1)		(CO	BL
a)	Wh	at is non-linear	data	a sti	ructi	re?)										1	L1
b)	Giv	e examples of A	Abst	rac	t dat	a ty	pes	?									1	L1
C)) Hov	v is the end of a	a sir	ngly	link	ed li	ist re	epre	sen	ted?)						2	L2
d) Describe the structure of a node in a Double linked list.							2	L1										
e) How a Circular queue is different from Queue?							3	L2										
f) Write a short note of applying stack on reversing list. 3								3	L3									
g)	Wri	te a recursive	func	tior	for	pre	-ord	ler t	rave	ersa	l in a	a B	ST.				4	L2
h)	Def	ine a graph. Ho	ow d	oes	it d	iffer	fron	n otl	her	data	stru	uctu	res li	ke t	rees?		4	L2
i)	Wh	at is a hash fun	ctio	n?													5	L1
j)	Wh	at is a collision	in th	ne c	onte	ext c	of ha	shir	ng?								5	L1
		A		b al				<u>RT-B</u>	f		.		F 10	- 50	Maulia			
		Answer <i>five</i> quest	lons	ру сі	noosi	ng o	ne qu	estic	on tro	om ea	acn u	nit (5 X 10	= 50			со	BL
							UN	IIT-I										
2	2. a)	Explain the ke	әу с	hara	acte	risti	cs t	hat	dist	ingu	iish	an	ADT	fror	m			
		a data structu	re.												5	M	1	L2
	b)	Write Time C	-	-	-	and	Sp	ace	Сс	mpl	exit	y o	f diff	erer	nt			
		linear data str	uctu	ires	?										5	M	1	L1
							OR											
3	5.	Explain the S																
		primary func								•			ation	S (
		these functior	is us	sing) an	arra	-			opro	ach	•			10	IVI	1	L3
Λ	2)	Write the pr		lurc	to	ind		IT-I		<u> </u>	t th		ogin	nin	r			
4	. aj	Write the promiddle, and e								c a	i ii		Jegin	i ili iç		M	2	L2
	b)	"Node structu				•				d lie	st co	omr	ared	to			2	L
	5)	singly linked l						•				- up		.0		М	2	L5
		3,7	,			,			-						•		-	-0

Code: 23A0521T

OR

5.	a)									
		list. What is the time complexity of this operation?	5M	2 L1						
	b)	Explain the Applications of LinkedList?	5M	2 L2						
		UNIT-III								
6.	a)	What is Queue? Explain properties and different applications of it.	5M	3 L2						
	b)	Describe and write a program to implement queue using LinkedList and its operations?	5M	3 L2						
		OR								
7.	a)	Apply the stack in expression evaluation with an example.	4M	3 L3						
1.			-111	3 L3						
	b)	What is De-queue? Illustrate the operations and applications of it.	6M	0 1 0						
			OIVI	3 L2						
0	~)	UNIT-IV								
ð.	a)	Define a tree data structure. How is it different from other	CM							
		data structures like arrays or linked lists?	6M	4 L2						
	b)	Explain how to search for a node in a binary tree.	4M	4 L2						
		OR								
9.	a)	Describe the process of insert and delete operations on								
		Binary Search tree.	4M	4 L2						
	b)	Use the following binary search tree and find pre-order, in-								
	order and post-order traversal of this tree.									
		(M)								
		G T								
		D K R W								
		A H L V								
		U	6M	4 L3						
		UNIT-V		. 20						
10.		Describe how hashing can be applied to generate unique								
		identifiers and provide examples of its applications.	10M	5 L3						
		OR		0 20						
11	2)									
11.	a)	Given a set of keys {23, 12, 34, 54, 72, 15, 65}, insert them								
		into a hash table of size 10 using chaining. Show the resulting hash table.	5M	E 10						
	۲	-		5 L3						
	D)	Explain the process of searching for a key in a hash table.	5M	5 L2						
		*** End ***								

Hall Ticket Number :								
R-23								
Code: 23AHS21T B.Tech. II Semester Regular Examinations July 2024								
Differential Equations and Vector Calculus								
(Common to All Branches)								
Max. Marks: 70 Time: 3 H	OUrs							
Note: 1. Question Paper consists of two parts (Part-A and Part-B)								
 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 								
PART-A								
(Compulsory question)	~~	Ξ.						
1. Answer all the following short answer questions (10 X 2 = 20M)	CO	BL						
a) Solve $(2^r \text{ the follow})_{ag}$ short answer c dx + (x + 2y + 1) = 0.	CO1	L3						
b) State Newton's Law of Cooling.	CO1	L1						
c) Solve $\begin{pmatrix} z & z & z & z & z & z & z & z & z & z $	CO2 CO2	L3 L3						
d) Find Pl of $\begin{pmatrix} -4D \\ -4D \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -$								
Form the partial differential equatic a, b from $z = ax + by + a^2 + b^2$.	CO3	L3						
f) Solve $\int_{p}^{p} \sqrt{\frac{p}{z} = \frac{d}{ax} + \frac{by}{y} + \frac{a^2}{a^2}} \sqrt{\frac{p}{x} + q} \sqrt{y} = \sqrt{z}$.	CO3	L3						
g) Find grad f, where $f = \sqrt{z}$.	CO4	L1						
h) Show that f_{IB} solenoidal, where $f_{IB}^{2z} + 3_{y2z2} + 3_{x2z2} + 3_{x2z2} + 3_{x2y2} + 3_{x2y2} + 3_{y2z2} +$	CO4	L1						
i) Evaluate the line integral $\int_{-c}^{w} (here^{\frac{j^2z}{2} + x^2z^2} \hat{i} + \frac{j^2z}{2} \hat{j} + j^2z$								
j) State Green's theorem								
PART-B	CO5	L1						
Answer <i>five</i> questions by choosing one question from each unit (5 x 10 = 50 Mark	is)							
Marks	CO	BL						
ÚNIT-I	CO1							
	CO1	L3						
OR								
3. a) Solve $xy(1 + xy^2) \frac{dy}{dx} = 1$ 5M	CO1	L3						
3. a) Solve $\frac{(4xy + 3y)}{xy(1 + xy^2)\frac{dy}{dx} = 1}$ b) If the temperat $\frac{y^2}{dy}\frac{dy}{dx} = t_{he}$ air i 30_{o} the substance cools from 100_{o} re of $70^{o}C$ in $\frac{s}{15}$ minutes. Find when the temperature will be $40^{o}C$. 5M								
cools from $100_{C}^{\text{ore of } 70^{\circ}C}$ in s minutes. Find when the								
temperature will be 40^{0C} . 5M	CO1	L3						

		Code	: 23AHS	521T	
4.		Solve $\binom{D}{D - 2D^2y} = e^{\binom{D}{e^{2x} + sin^2x + x}}$	10M	CO2	L3
5.		Solve t he simultaneous equations $\frac{q_x}{q_t} + 2y + s_{int} = 0$, $\frac{dy}{dt} - 2_x - cost = 0$, given that $x = 0$ and $y = 1$ when $t = 0$.	10M	CO2	L3
6.	a)	UNIT-III F _{brm t} he _{bartial} diff _e ren _{iti} al equation by eliminating arbitrary constants <i>a, b</i> and <i>c</i> from			
		$\binom{x-a}{2} + \binom{y-b}{2} + \frac{z}{c} = \frac{c}{c}$	5M	CO3	L3
	D)	Form the partial differential equation by eliminating arbitrary functions <i>f</i> and <i>g</i> from $z = f(y + 2x) + g(y - 3x)$.	5M	CO3	L3
7.		Solve $\begin{pmatrix} y & z \\ x^2 & y^2 \end{pmatrix} p + \begin{pmatrix} y^2 & y^2 \end{pmatrix} = z^2 - xy$.	10M	CO3	L3
8.		UNIT-IV If $F = \nabla(x^3 + y^3 + z^3) = 3_{xyz}$ find curl(F). Find the directional derivative of $\frac{T-IV}{Id \ c \ T _2F}$. (1,-2,-1) in the direction of the vector $2i$ -j-2k.		CO4 CO4	
		OR			-
9.	a)	between the surfaces $\sum_{x=x^2+y^2-13}^{2^{1-j-2}k} = 6 \text{ and}$ Find the angle $z = x^2 + y^2 - 13$ at (2,1,2).	5M	CO4	L3
	0)	$F_{nd the \ \ s o}^{= x^{2} + i} alu(\stackrel{13}{=} f a, b, c f a, $	5M	CO4	L3
10.		UNIT-V Find the work down by a force $\frac{ \mathbf{N} \mathbf{T}-\mathbf{V} ^2}{ \mathbf{F} ^2}$ (2 along the straight line from $(0, 6, 0)$ to $(2, 1, 3)$.			
11.		Verify reen's the Gi sorem for $\int_C (xy + \frac{2}{y^2}) dx + x^2 dy$, where <i>c</i> is bounded by $y = x$ and $y = x^2$	10M	CO5	L3

ſ	Hall Ticket Number :			
L	Code: 23A0121T	R-23		
	B.Tech. II Semester Regular Examinations July 2024			
	Basic Civil & Mechanical Engineering			
	(Common to EEE, ECE, AI&DS and CSE(AI))			
	Max. Marks: 70	Time: 3 I	Hours	

	Note: 1. Question Paper consists of two parts (Part-1 and Part-2)			
	 Use separate Answer booklets for Part-1 and Part-2 Part-1 & Part-2 of question paper consists of Part-A & Part-B 			
	4. In Part-A, each question carries One marks.			
	5. Answer ALL the questions in Part-A and Part-B			
	PART-1			
	PART-A			
	(Compulsory question)			
	1. Answer all the following short answer questions ($5 \times 1 = 5M$)	CO	BL	
	 a) Mention any four construction materials. 	CO1	L2	
	b) Define- Porosity.	CO1	L2	
	c) What is meant by estimation?	CO2	L2	
	d) Write the use of levelling instruments.	CO2	L2	
	e) What is Rigid pavement?	CO3	L2	
	$\frac{PART-B}{PART-B}$ Answer <i>five</i> questions by choosing one question from each unit (3 x 10 = 30)	0 Marks)	
		Marks	CO	
	UNIT-I			
	What are the ingredients of cement concrete? Explain the			
	process of making various types of concrete in detail.	10M	CO1	
	OR			
	Discuss the scope of Water resources Engineering and			
	Environmental Engineering in detail.	10M	CO1	
	UNIT-II			
	Explain the following with suitable example.			
	(i) Angular measurements. (ii)Contour mapping.	10M	CO^{2}	
	OR	10101	002	
	Explain the following with respect to a room of dimensions 3metres x 3metres x 3metres.			
		1014	000	
	(i) Detailed estimate. (ii) Abstract estimate.	10M	002	
	UNIT-III			
	Explain the applications of Rigid pavements and Flexible			
	pavements with examples.	10M	CO3	
	OR			
	Explain the following with suitable example. (i) Rain water			
	harvesting. (ii) Types of dams and Reservoirs.	10M	CO3	

Page **1** of **2**

<u> PART-2</u>

PART-A

(Compulsory question)

1. Answer all the following short answer questions	(5 X 1 = 5M) C	O BL	-
a) Write industrial applications of non-ferrous metals.		4 <i>~</i>	I
b) What is the use of riser in a casting pattern?		5 ´	I
c) Write the full form of CNC.		5 2	I
d) Draw the <i>p</i> - <i>V</i> diagram of an Otto cycle.		5 ´	I
e) Write any two applications of robotics?		6 ´	I
PART-B			
Answer <i>five</i> questions by choosing one question from eac	•	ks) GCO	ы
UNIT-I	IN ALKS		DL
2. a) Briefly explain the role of a mechanical eng	ineer in the		
following sectors: (i) Automotive and (ii) Marine.	6N	1 4	1
b) What is the role of a mechanical engineering i	n aerospace		
industry?	4№	1 4	1
OR			
3. a) What are the advantages and limitations of usin	ig composite		
materials in aerospace industry compared to	conventional		
materials?	6N	4	1
b) Name any two smart materials and describe their a	applications. 4N	1 4	1
UNIT-II			
4. a) Briefly explain the casting process. Why it is requ	iired? 6M	1 5	3
b) Briefly explain steps/stages involve in 3D printing	. 4N	I 5	2
OR			
5. a) With a neat T-s diagram, explain the working p	principle of a		
vapour compression refrigeration cycle. Write the	e formula for		
its COP.	5N	1 5	2
b) What are the differences between SI and CI engi	nes? 5M	I 5	2
UNIT-III			
6. a) With a neat sketch explain the working of a Diesel	power plant. 6N	6	3
b) What are the challenges in running hydro power	plants? 4N	6	2
OR			
7. a) What are the different power transmission device	ces? Explain		
working of belt drive transmission with a neat ske	etch. 5N	6	2
b) What are the basic laws of robotics? Explain.	5N	I 6	2
*** End ***			

Ha	all Ticket Number :			1
Co	de: 23AHS24T	R-23	3	
	B.Tech. II Semester Regular Examinations July 2024			
	Chemistry (Common to EEE, ECE, AI&DS and CSE(AI))			
Мс	ax. Marks: 70	Time: 3	Hours	5
Not	e: 1. Question Paper consists of two parts (Part-A and Part-B)			
Not	2. In Part-A, each question carries Two marks.			
	3. Answer ALL the questions in Part-A and Part-B			
	<u>PART-A</u> (Compulsory question)			
1. An	swer all the following short answer questions $(10 \times 2 = 20M)$		СО	BL
	Calculate the bond order for Oxygen molecule.		CO1	L3
,	Define and 2 .		CO1	L2
c) V	Vrite two applications of super conductors.		CO2	L1
d) V	Vhat are p-type and n-type semiconductors? Give examples.		CO2	L1
e) D	Describe the components of a conductivity cell.		CO3	L2
f) D	Draw the construction of H_2 - O_2 fuel cell.		CO3	L4
g) D	Differentiate between thermosets and thermoplastics		CO4	L2
h) ⊦	low is Bakelite prepared?		CO4	L1
i) V	Vhat is the importance of IR spectroscopy?		CO5	L1
j) D	Describe the basic principle of chromatography.	(CO5	L2
	PART-B		,	
	Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 10 = 50$	0 Marks)	
		Marks	СО	BL
•				
2.	Give a detailed account of Molecular Orbital theory. Draw molecular energy level diagrams of O2 and CO molecules.	10M	CO1	14
	OR		COT	L4
3.	Derive Schrodinger wave equation and explain the			
0.	significance of and 2	10M	CO1	L3
	UNIT-II			
4.	Describe the properties of any two Nanomaterials in			
	detail. List out their significant applications in various			
	fields.	10M	CO2	L2
	OR			

5.	Explain the types and properties of supercapacitors. Discuss their practical applications in various fields of engineering.	10M	CO2	L2
6.	Derive Nernst equation and explain its significance in calculating cell potentials.	10M	CO3	L3
	OR			
7. a)	Explain the principle and applications of Polymer Electrolyte Membrane Fuel cell (PEMFC).	5M	CO3	L2
b)	What are the potentiometric sensors? Explain their practical applications with suitable examples.	5M	CO3	L1
8. a)	Explain chain growth and step growth polymerization techniques with suitable examples.	5M	CO4	L2
b)	Give an account of the preparation and properties of elastomers.	5M	CO4	L4
	OR			
9.	Explain the mechanism of conduction in conducting polymers and discuss their practical applications.	10M	CO4	L2
10.	Describe various electronic transitions induced by UV- Visible radiation and explain the significance of Beer- Lambert's law in UV-Vis spectroscopy	10M	CO5	L2
	OR			
11.	Draw the setup of HPLC chromatography and write a detailed account of its working mechanism. *** End ***	10M	CO5	L4

Hall Ticket	Number :													
Code: 23AH	[S22T			<u> </u>		I							R-23	
	B.Tech.	ISem	neste	er Re	egul	ar E	xam	nina	tion	s Jul	y 202	4		
			Com					-						
Max. Marks	•	ommo	on to	EEE	, EC	e, Al	&DS	and	d CS	E(AI))	Tim	e: 3 Hc	nirs
	. 70				****	* * * * *	k						0.0110	/013
Note: 1. Ques	•			•	•			nd Pa	art-B)				
	art-A, each qu wer ALL the c							3						
		10.0000				RT-A		-						
	he fellouine.	a haut a	•	omp			lesti	-	0 V (~~~	ы
1. Answer all ta) What did	C C			•			2	(1	0 X 2	2 = 20	JIVI)		CO CO1	BL
b) What kir						-		fir د	ct th	nroo	stan	zas in		LZ
-	n "The Boo	-	15 (1030				5 111	or u	nee	Stari	203 11	CO1	L2
c) Write the			e fol	llowi	ing v	word	ds:							
i. coot	ii. evaluat		iii. c		-		_	/. SC	quad	dron			CO2	L2
d) Briefly de	escribe two	of bu	usine	ess	ven	ture	s of	Elo	n M	usk.			CO1	L4
e) Explain I	Note-makir	ıg.											CO3	L2
f) What is a	a Chronolo	gical	Res	ume	?								CO3	L2
g) What a			•		Na	tion	al	Pea	ace	Co	uncil	does		
	h show he		ther	·?									CO1	L2
h) List out t		-											CO3	L2
i) What is s					:		¢			1			CO3	
j) Define te	echnical jar	gon a	and p	orov		any ≀T-B		rex	amp	les.			CO2	L1
Answer	five question	s by cl	noosi	ng oi				om e	ach u	ınit (5 x 10	= 50 M	arks)	
			Г										Marks	CO
a) Haw da	lim'a and		lo'o				mbo		. +h.		ropat	h of		
a) How do	e for each			acu	ions	Sy	mbc	mse		e su	rengu		5M	CO1
				+		tha	fina	ncia	ما ما	tuati	on of	tho		COT
b) Write a	n the story				-				21 21	luali		แษ	5M	CO1
ocupio i		1110		O		mag							OW	001
a) Write a	Formal D	ialoa		_		o tv		offic	iale	in	an o	ffico		
•	cing each	-			VCCI	1 10	000	JIIIC	1015			mee	5M	CO1
b) Write th	•			ne e	xan	nple	for	th	e fo	llow	ina F	Root	••••	001
,	i.bio ii.ex	-				•					•		5M	CO3
					JNI	-					0			
a) Write ar	n elaborate	para	gra	oh o	n "S	Sup	erst	itior	າຣ".				5M	CO3
b) Fill in th	ne blanks	with	suit	abl	e Pr	epo	ositi	ons	s:				5M	
	es					-								
ii. I will a	arrive	ei	ght	o' cl	lock									
	e known he		-											
iv. Missi	ng the bus	is no	o exe	cuse	Э		bein	ig la	ate.					
v. Peop	e often ma	ake fu	ın		_ wł	hat t	they	do	not	unc	lersta	and.		
vi. We w	/ill take a s	urvey	/		the	par	rticip	ant	ts.					
							-						Page 1	of 2

How has the poet described landscape, flowers, plants and colours in the poem? How does it make you feel as a reader?									
Substantiate your answer with examples form the poem.	10M	CO1	L3						
UNIT-III									
In what way has Musk proved to be a visionary leader of									
cutting-edge technology? Discuss with relevant examples.	10M	CO1	L4						
OR									
Fill in the blanks with suitable <i>verb</i> forms:	5M	CO3	L3						
i. Keep (guess) the answers till you get them right.									
ii. Were you (pay) attention to what was being said?									
iii. I have (read) many books in the last one year.									
iv. How have you been?(do)									

- v. Asif (teach) for six years at the computer institute by the time his father retires.
- vi. Raman _____ (live) in Chennai for 10 years.

b) Fill in the blanks with Collocation words:

5.

6.

7. a) Fill in the blanks with

- i. We couldn't take up another assignment as we were .
- ii. My work hours are flexible. I don't need to begin at a _____.
- iii. John asked his boss, 'I know you're busy, but can you for me this week? I need to discuss something with you'.
- iv. Tsering was so eager to finish that he got done in _____.
- v. We have _____ before the train arrives.
- vi. Vishnu has been through some

UNIT-IV

8. a) Describe how the children found an exciting way to play with their new to play with their new non-violent toys. 5M CO1 L4 b) Write a letter to the Principal to organize a workshop on A I to resolve the A I future doubts. 5M CO4 L3 OR 9. a) Do you think Harvey and Elizabeth's experiment failed? Justify your answer. 5M CO1 L4 b) Prepare a resume for applying a job as software developer in IT industry. 5M CO4 L3 **UNIT-V** 10. a) What are the different ways in which Interpersonal Communication helps improve everyday life? 5M CO3 L1 b) Write six to eight presentation tips in making a presentation. 5M CO3 L2 OR Write an Essay on the topic : " The impact of social media on 11. youth". 10M CO3 13 *** End ***

Code: 23AHS22T

5M CO4 L4

OR