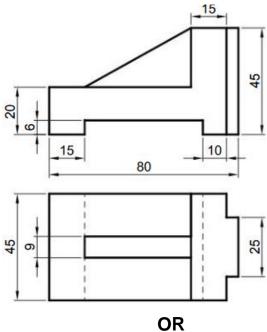
	Hall Ticket Number :		\neg	
	Code: 23A0322T-B	-23		
	B.Tech. II Semester Regular Examinations July 2024			
	Engineering Graphics			
	(Common to CSE & CSE(DS)) Max. Marks: 70 Time	: 3 Hou	ırç	
	**************************************	. 5 1100	113	
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 14 = 70 \text{ Mag}$	•		
	LINUT	Marks	СО	BL
1.	UNIT-I Draw an epicycloid of a circle of diameter 50 mm, which rolls outside			
١.	a circle of diameter 180 mm for one revolution. Also, draw a tangent			
	and a normal to the epicycloid at a point 135 mm from the center of			
	the directing circle.	14M	1	3
	OR			
2.	Construct a scale of 1:40 to read meters, decimeters and			
	centimeters and long enough to measure up to 6 m. Mark a distance	4 4 5 4		•
	of 4.76 m on it. UNIT-II	14M	1	3
3.	Draw the projections of the following points on a common reference			
Ο.	line keeping the distance between their projectors 25 mm apart.			
	(a) Point A is 40 mm above the H.P. and 25 mm in front of the V.P.			
	(b) Point B is 40 mm above the H.P. and in the V.P.			
	(c) Point C is 25 mm in front of the V.P. and in the H.P.			
	(d) Point D is 25 mm above the H.P. and 30 mm behind the V.P.			
	(e) Point E is in the H.P. and 30 mm behind the V.P.			
	(f) Point F is 40 mm below the H.P. and 30 mm behind the V.P.(g) Point G is 25 mm below the H.P. and 40 mm in front of the V.P.	14M	2	3
	OR	1-7141	2	3
4.	A 70 mm long line PQ is inclined at 30° to the H.P. The end P is 15			
•	mm in front of the V.P. and 25 mm above the H.P. The front view of			
	the line measures 45 mm. Draw the projections of the line PQ and			
	determine its true angle of inclination with the V.P.	14M	2	3
_	UNIT-III The diagonals of a rhambus massure 100 mm and 10 mm. The			
5.	The diagonals of a rhombus measure 100 mm and 40 mm. The longer diagonal is inclined at 30° to H.P. with an end in H.P. and the			
	smaller diagonal is parallel to both the principal planes. Draw its			
	projections.	14M	3	3
	OR			
6.	A hexagonal prism of base edge 30 mm and axis 70 mm has its axis			
	parallel to and 50 mm above the H.P. Its base is parallel to the V.P.			
	and an edge of the base is inclined at 45° to the H.P. Draw its projections.	14M	3	3
	p. 0,000,000		J	J

Code: 23A0322T-B

UNIT-IV

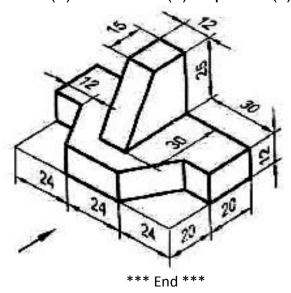
7. A square pyramid of base side 40 mm and axis 60 mm is resting on its base on the H.P. with a side of base parallel to the V.P. Draw its sectional views and true shape of the section, if it is cut by a section plane perpendicular to the V.P., bisecting the axis and is parallel to the H.P.

14M 4 3


OR

8. A cylinder of base diameter 50 mm and axis 70 mm is resting on ground with its axis vertical. It is cut by a section plane perpendicular to the V.P., inclined at 45° to the H.P., passing through the top of a generator and cuts all the other generators. Draw the development of its lateral surface.

14M 4 3



9. The front and the top views of an object are shown in Fig. Draw its isometric view.

14M 5 3

10. Draw the following views for the object shown in figure. All dimensions are in mm. (a) Front view (b) Top view (c) Left side view.

14M 5 3

Hall Ticket Number :	-23		
Code: 23AHS25T			
B.Tech. Il Semester Regular Examinations July 2024 Engineering Physics			
(Common to CE, ME, CSE, CSE(DS) and AI&ML)			
Max. Marks: 70 Time	: 3 H	ours	
******* Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
2. In Part-A, each question carries Two marks .			
3. Answer ALL the questions in Part-A and Part-B			
PART-A			
(Compulsory question) 1. Answer <i>all</i> the following short answer questions (10 X 2 = 20M)	(CO	BL
a) Define interference and diffraction.		01	L1
b) What is resolving power of grating?			L2
c) Define the terms lattice and basis.			L1
d) What are miller indices?			L2
e) Write the relation between relative permittivity and susceptibility.			L4
f) Define the terms Magnetic permeability and susceptibility.	С	O3	L1
g) What are matter waves?	С	04	L1
h) State Heisenberg uncertainity principle.	С	04	L1
i) What is Hall effect?	С	O5	L2
j) What is n type semiconductor.	С	O5	L2
PART-B			
Answer <i>five</i> questions by choosing one question from each unit ($5 \times 10 = 50 \text{ Ma}$)		СО	BL
UNIT-I			
2. a) Explain interference in thin film due to reflected light and			
,	6M (CO1	L2
b) Describe colors in thin film and write examples.	4Μ (CO1	L2
OR			
3. a) Explain construction and working of Nicol's prism to			
produce polarized light.	6M (CO1	L4
b) Describe polarization of light by reflection.	1M (CO1	L2
UNIT-II			
4. a) Calculate coordination number and packing fractions for	.		
	6M (
h) Derive the equation for interplanar spacing	1N/I	CC^2	1 2

Code: 23AHS25T

OR

5.	a)	Explain the crystal structure determination by powder method.	6M	CO2	1.4
	h)				
	D)	Derive Bragg's law of X-ray diffraction.	4111	CO2	L2
c		UNIT-III			
6.		Define types of polarizations in dielectrics and derive the expression for electronic polarizability.	10M	CO3	1.4
		OR	TOIVI	CO3	LI
7	٠,		CN 4		
1.	a)	Distinguish among dia, para and ferro magnetic materials.	6M		L4
	b)		4M	CO3	L2
		UNIT-IV			
8.	a)	Derive the equation for eigen values of a particle in one			
		dimensional potential box.	6M	CO4	L4
	b)	Calculate the energies of first and second quantum states			
		of a particle confined to a potential box of length 2A ⁰ .	4M	CO4	L3
		OR			
9.	a)	Derive the expression for electrical conductivity according			
		to quantum free electron theory.	6M	CO4	L5
	b)	Write the differences between classical and quantum free			
		electron theory.	4M	CO4	L4
		UNIT-V			
10.	a)	Derive the concentration of electrons in the conduction			
		band of intrinsic semiconductors.	6M	CO5	L5
	b)	Write the expression for electrical conductivity in intrinsic			
		semiconductors.	4M	CO5	L5
		OR			
11.	a)	Derive drift and diffusion currents?	6M	CO5	L2
	b)	Deduce Einstein' equation.	4M	CO5	L2
		*** End ***			

	ŀ	Hall Ticket Number :			
	Co	ode: 23A0221T	R-23		
		B.Tech. II Semester Regular Examinations July 2024			
		Basic Electrical & Electronics Engineering			
		(Common to CE, ME, CSE, CSE(DS) and AI&ML)			
	M	ax. Marks: 70 ********	ne: 3 Ho	urs	
	No	ote: 1. Question Paper consists of two parts (Part-1 and Part-2)			
		2. Use separate Answer booklets for Part-1 and Part-2			
		3. Part-1 & Part-2 of question paper consists of Part-A & Part-B			
		4. In Part-A, each question carries One mark.			
	D 4	5. Answer ALL the questions in Part-A and Part-B			
	PA	<u>.RT-1</u> PART-A			
		(Compulsory question)			
•	1. A	Answer all the following short answer questions $(5 \times 1 = 5M)$	CO	BL	
	a)	State the Kirchhoff's current law?	1	1	
	•	Define the term RMS value?	1	1	
	,	What is the basic principle of three phase induction motor?	2	-	
	,	Which type of instruments is used for measuring DC voltages a	_	•	
	u)	DC currents?	2	1	
	e)	What is the working principle of fuse?	3		
	-,	PART-B	J	·	
	Ar	nswer <i>any three</i> questions by choosing one question from each unit (3x10=	30 Mark	s)	
			Marks	CO	Βl
		UNIT-I			
		State and explain the Superposition theorem with an example?	10M	1	2
		OR			
		Explain the following terms with respect to alternating quantities			
		with the help of neat diagram			
		i) Phase and Phase difference ii) Frequency and period			
		iii) Resistance and impedance	10M	1	2
		UNIT-II			
		Explain the operating principle of DC generator and single			
		phase transformer with neat diagram?	10M	2	2
		OR			
		Describe the construction and working of Moving coil instruments?	10M	2	2
		UNIT-III			
		Briefly explain the operation of nuclear power station with a neat			
		sketch?	10M	3	2
		OR		-	_
,	a)	Explain the safety precautions to avoid electric shock?	5M	3	2
6				-	_

Code: 23A0221T

B.Tech. II Semester Regular Examinations July 2024

Basic Electrical & Electronics Engineering

(Common to CE, ME, CSE, CSE(DS) and AI&ML)

PART-2

PART-A

(Compulsory question)

1	Δηςι	wer all the following short answer questions (5 X 1 = 5M)	1	CO	BL
,		w the forward characteristics of p-n junction diode.		CO1	2
		fine the Zener effect in Zener diodes.		CO1	1
c)		scribe the difference between intrinsic and extrinsic semicond	uctors.	CO2	1
-		etch the circuit diagram of Full wave rectifier circuits.		CO2	1
e)	Co	nvert (1001) ₂ into a decimal number.		CO2	3
	A	PART-B	40.001	M =1 \	
	Ans	wer any three questions by choosing one question from each unit (3x	1 0=30 i Marks	Marks) CO	BL
		UNIT-I	Viaiks	CO	DL
2.		Sketch the input and output characteristics of common			
۷.		emitter transistor configuration and explain briefly.	10M	CO3	
		OR	10111		
3.		Explain the VI characteristics of PN junction diode.	10M	CO3	
Ο.		UNIT-II	10111	000	
4.		Describe the working principle of a Zener diode. How is			
		it used for voltage regulation? Provide a circuit diagram			
		and explain its operation under different load conditions.	10M	CO4	
		OR			
5.		With a neat circuit diagram and waveforms explain the			
		working of full wave bridge rectifier with C filter	10M	CO4	
		UNIT-III	IOIVI	004	
6	2)		5N/	CO5	
0.	a)	Design a full adder with two half adders	5M	CO3	
	b)	Describe the working of JK flip flop with help of its truth	5N/	COE	
		table	5M	CO5	
_	,	OR	-14	005	
1.		Verify the truth tables of various logic gates	5IVI	CO5	
	b)	Write a short notes on			
		i) Resistors	-8 4	005	
		ii) Counters	5M	CO5	
		*** Fnd ***			

	Hall	Ticket Number :														
	Code	e: 23A0521T												R-23		
		B.Tech.	l Sem			_				tions	S Jul	y 202	4			
		10	- 1 - 6			te c				DC)		A 10 A 4				
	Max.	(Commc . Marks: 70	n to C	∠SE,	AI&I	JS, C	.SE(≀	(1), (~2F(DS) (ana	AI&M	-	ie: 3 Ho	urs	

	Note:	 Question Paper co In Part-A, each qu 			•	`			nd Pa	rt-B)						
		3. Answer ALL the c							3							
							RT-A									
1 /	Λρονν	or all the followin	a cho	•	-	ulso	-		•	10 V	′ O _	- 201/	1\		CO	DI
		er <i>all</i> the following	_				Jesi	IOHS	• (10 /	~	= ZUIV	ı <i>)</i>	,		
		at is non-linear da					2								1	L1
b)		e examples of Ab			•	•		000	tod?)					1	L1
d)		v is the end of a s	• •				•				·+					L2
,		scribe the structur								iu iis	ol.				_	L1
e) f)		v a Circular queud								lict						L2
,		te a short note of							_		2 R	2T				L3
g)		te a recursive fur			•								ko tro	002	-	L2
h) i)		ine a graph. How at is a hash functi		it u	IIIEI	11011	ii Oti	ICI '	uata	Suc	JClu	ies iii	KE LIE	CO!	-	L2
.,				onto	vt o	of ha	chir	va2							5	L1
J)	VVII	at is a collision in	li ie c	Onte	, XI U		ST-B	ıy :							5	L1
		Answer five question	s by cl	noosi	ng oi			n fro	om ea	ach u	nit (!	5 x 10 :	= 50 Ma	arks)		
						111	UT 1							Marks	CC) BL
2	. a)	Explain the key	char	acta	rieti		IIT-I hat		inaı	iieh	an	ΔΠΤ	from			
_	a)	a data structure		acie	11311	US I	ιιαι	uist	irigu	11311	aii i	וטה	110111	5M	1	L2
	b)	Write Time Cor		city	and	Sn	ace	Cc	mpl	exit	v of	diffe	erent	0	'	
	۵)	linear data struc	-	-	arra	Οp	aoo		,,,,b,	07414	<i>y</i> 0.	a	31 3111	5M	1	L1
						OR										
3	.	Explain the Stad	ck Ab	stra	ct D	ata	Typ	oe (ADT	-) ar	nd d	liscus	ss its			
		primary function						•		•						
		these functions	using	an	arra	ay-b	ase	d ap	opro	ach				10M	1	L3
							IT-II									
4	. a)	Write the proce							e a	t th	e b	egini	ning,	O 1 4		_
	L, \	middle, and end			•				ا ا.	.1 -		ا. د سم	4	6M	2	2 L2
	D)	"Node structure singly linked list					•		a lis	ST CC	mp	ared	to a	4M	_	
		Singly linked list	, Jus	ury	you	ıall	SWE	ž1 :						4111	2	2 L5

Code: 23A0521T

OR

5.	a)	Describe the process to search for a value in a singly linked list. What is the time complexity of this operation?	5M	2	L1
	h)	·	5M		
	D)	Explain the Applications of LinkedList? UNIT-III	JIVI	2	L2
c	۵)				
ъ.	a)	What is Queue? Explain properties and different applications of it.	5M	3	L2
	b)	Describe and write a program to implement queue using LinkedList and its operations?	5M	3	L2
		OR			
7.	a)	Apply the stack in expression evaluation with an example.	4M	3	L3
	•	What is De-queue? Illustrate the operations and applications			
	,	of it.	6M	3	L2
		UNIT-IV			
8.	a)	Define a tree data structure. How is it different from other			
	/	data structures like arrays or linked lists?	6M	4	L2
	b)	Explain how to search for a node in a binary tree.	4M	4	L2
	,	OR		•	
۵	a)	Describe the process of insert and delete operations on			
٦.	aj	Binary Search tree.	4M	1	L2
	h)	•	7171	4	LZ
	D)	Use the following binary search tree and find pre-order, in- order and post-order traversal of this tree.			
		(M)			
		G T			
		(D) (K) (R) (W)			
		A H D V			
			6M	4	1.0
		UNIT-V	Olvi	4	L3
10.		Describe how hashing can be applied to generate unique			
10.		identifiers and provide examples of its applications.	10M	5	L3
		OR	10111	5	LJ
11	٥,				
11.	a)	Given a set of keys {23, 12, 34, 54, 72, 15, 65}, insert them			
		into a hash table of size 10 using chaining. Show the	EN A	_	
		resulting hash table.	5M	5	L3
	b)	Explain the process of searching for a key in a hash table. *** End ***	5M	5	L2

	На	all Ticket Number :			
	Cod	de: 23AHS21T	R-23		
		B.Tech. Il Semester Regular Examinations July 2024 Differential Equations and Vector Calculus (Common to All Branches)			
	Ma	x. Marks: 70	Time: 3 H	ours	
	Note	******** e: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks . 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question)			
1 A	nsw	er <i>all</i> the following short answer questions (10 X 2 = 20M)		СО	BL
		$e\left(2^{t \text{ the follow}}\right)_{\substack{ng \text{ short answer c} \\ dx + y + 1}} = 0.$		CO1	L3
b) :	Stat	e Newton's Law of Cooling.		CO1	_0 L1
,		/e (lewton; = Law of Col		CO2	L3
d)	Find	$ P \text{ of } \begin{cases} -4D + 4y = 6 \\ -2 + 4D + 4y = 6 \end{cases}$ $ P \text{ of } \begin{cases} -4D + 4y = 6 \\ -2 + 5D + 6y = 63x \\ -2 + 5D + 6y = 63x \end{cases}$			
		Phe $(D^2 + 5D + 6)y = 63x$ in by eliminating arbitrary co	netants	002	_0
′	Forr	the partial differential equality from $z = ax + by + a^2 + b^2$.	motanto	CO3	L3
f) ;	Solv	th partial differential $Z = ax + by + a^2$ $P = \sqrt{x} + q\sqrt{y} = \sqrt{z}.$		CO3	L3
g)	Find	I grad f, where $= \frac{\sqrt{2}}{\sqrt{2}} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}$		CO4	L1
h)	Shov	w that $f = 3$ solenoidal, where $f = 3$ $2 \times 2 \times 2 \times 2 \times 1 + 3$ $2 \times 2 \times 2 \times 2 \times 1 + 3 \times 2 \times 1 +$	12 R	CO4	L1
i)	Eva	w that f is solenoidal, where $f = 3 \frac{x^{3} + 3}{x^{2} + 2} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2}} \frac{1}{x^{2}} + 3 \frac{x^{2} + 3}{x^{2} + 2} \frac{1}{x^{2} + 2} \frac{1}{x$	C is the	CO5	L3
	_	_		005	1.4
J)	Sia	te Green's theorem PART-B		CO5	L1
	Ar	nswer <i>five</i> questions by choosing one question from each unit (5 x 10) = 50 Mark	is)	
			Marks	CO	BL
•	,	UNIT-I			
2.	a)	Solve $\frac{dy}{dx} + \frac{\text{UNIT-I}}{ytanx} = y^3 secx.$ Solve $(4^2 + ytan^2 = y^3 secx. + x(x + 2y)dy = 0.$	5M	CO1	L3
	b)	Solve $\left(4\frac{2}{xy} + \frac{y\tan x}{3y^2} = \frac{y^3 \sec x}{x^2 \cot x} + \frac{y^3 \sec x}{x^2 \cot x} = 0.$	5M	CO1	L3
		OR			
3.	a)	Solve	5M	CO1	12
	h)	Solve $\frac{(4xy + 3y)}{xy(1 + xy^2)} \frac{dy}{dx} = 1$ If the temperat $\frac{y}{dx} = \frac{1}{2}$ the air i $\frac{30}{6}$ the substant cools from $\frac{1000}{6}$ re of $\frac{700}{6}$ in $\frac{1}{15}$ minutes. Find when the	אַנ	COT	L3
	~ <i>)</i>	cools from 100° re of 70° C in s minutes. Find when the	ne		
		temperature will be 40^{0C} .	5M	CO1	L3

Code: 23AHS21T

UNIT-II

4. Solve $\binom{D-2}{2} = \frac{1}{2} \binom{DNIT-II}{2} \binom{DNIT-II}{2}$

10M CO₂ L₃

OR

5. Solve the simultaneous equations $\frac{a_x}{at} + 2y + \frac{s}{2int} = 0$, $\frac{dy}{dt} - 2x - cost = 0$, given that x = 0 and y = 1 when t = 0.

10M CO₂ L₃

UNIT-III

6. a) F_{brm} the bartial differential equation by eliminating arbitrary constants a, b and c from

$${\binom{x-a)_2}{\text{orm t}}} + {\binom{y-b)_2}{\text{orticl}}} + {\binom{z_2}{\text{orticl}}} = {\binom{z_2}{\text{orticl}}}$$

5M co₃ L₃

b) Form the partial differential equation by eliminating arbitrary functions f and g from z = f(y + 2x) + g(y - 3x).

5M co₃ L₃

OR

10M CO3 L3

UNIT-IV

8. a) If $\mathbf{p} = \nabla(\mathbf{x}^3 + \mathbf{y}^3 + \mathbf{z}^3 - 3\mathbf{z}\mathbf{y}\mathbf{z})$ find $\mathbf{curl}(\mathbf{p})$.

5M CO4 L3

- b) Find the directional derivative of $\frac{\mathbf{T-iV}}{|\mathbf{r}|} = \frac{1}{|\mathbf{r}|} = \frac{1}{$
- 5M CO4 L3

OR

9. a) between the surfaces $\lim_{z = x^2 + y^2 - 13} \text{ at (2,1,2)}.$

5M CO4 L3

b) $F_{\text{nd the}}^{= x^2 + 7} \text{alu}(\frac{13}{250} \text{ f } a, b, c)$

if $\vec{F} = (x+y+az)\hat{\imath} + (bx+2y-z)\hat{\jmath} + (x+cy+2z)\hat{k}$ is irrotational

5M CO4 L3

UNIT-V

10. Find the work down by a force $\frac{1}{\sum_{i=1}^{\infty} (2^i)^2}$ along the straight line from (0, 0, 0) to (2, 1, 3).

OR

11. Verify the Gi seen's the orem for $\int_C (xy + \frac{2}{y^2}) dx + \frac{2}{x^2-dy}$, where C is bounded by y = x and $y = x^2$.

*** En ***

*** End ***