R-20

Code: 20AC22T

| B.Tech. || Semester Regular Examinations October 2021
Applied Physics
(Common to CSE and AI\&DS)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Define diffraction grating.
b) If the susceptibility of a dielectric is 4 , what is its dielectric constant?
c) What is critical angle?
d) What are direct bandgap semiconductors? Give example
e) Write any two applications of nanomaterials.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

		Marks	CO	$\underset{\text { Level }}{\text { Blooms }}$
	UNIT-I			
2. a)	Explain the formation of Newton's rings. How do you determine the wavelength of an unknown source by using Newton's rings?	8M		
b)	In a Newton's rings experiment the diameter of the $15^{\text {th }}$ ring is found to be 0.59 cm and that of the $5^{\text {th }}$ ring is 0.336 cm . If the radius of curvature of the lens is 100 cm , find the wave length of the light.	4M		
	OR			
3. a)	Write a short note on quarter and half-wave plates.	8M		
	Calculate the thickness of quarter wave and half wave plates of wavelength $5890 \mathrm{~A}^{0}, \mu_{0}=1.654$ and $\mu_{\mathrm{e}}=1.582$.	4M		
	UNIT-II			
4. a)	What is local field? Deduce an expression for it?	8M		
b)	The relative permittivity of sulphur is 4.0 , calculate its atomic polarizability (given that sulphur in cubic form has a density of $2.08 \times 10^{3} \mathrm{Kg} / \mathrm{m}^{3}$ and its atomic weight is 32)	4M		
	OR			
5. a)	Differentiate soft and hard magnetic materials. Write few applications of magnetic materials.	8M		
b)	A magnetic material has a magnetization of $3000 \mathrm{amp} / \mathrm{m}$ and flux density of $0.005 \mathrm{weber} / \mathrm{m}^{2}$. Calculate the magnetic force and the relative permeability of the material.	4M		

UNIT-III
6. a) State and prove Gauss divergence theorem 8M
b) State the four Maxwell's equations 4 M
OR
7. a) Discuss in detail about the attenuation and various losses in optical fibers. 8M
b) In an optical fiber, the fractional refractive index change is 0.14 and refractive index of cladding is 1.3. Calculate refractive index of core. 4M
UNIT-IV8. a) What is Hall effect? Derive an expression for Hall coefficient.8M
b) Write any four applications of Hall effect. 4MOR9. a) Derive an expression for the carrier concentration in an n-type semiconductors8 Mb) The electron concentration in an n-type semiconductor is $5 \times 10^{-17} \mathrm{~m}^{-3}$. Calculatethe conductivity of the material if the drift velocity of electron is $350 \mathrm{~m} / \mathrm{s}$ in anelectric field of $1000 \mathrm{v} / \mathrm{m}$.4M
UNIT-V
10. a) Explain BCS theory of superconductivity. How it explains zero resistivity 8M
b) Explain Meissner's effect in superconductors. 4M
OR
11. With a neat sketch explain the principle, construction and working of scanning electron microscope.
| B.Tech. || Semester Regular Examinations October 2021

Basic Electrical and Electronics Engineering

(Common to CE, CSE and AI \& DS)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
 (Compulsory question)

1. Answer ALL the following short answer questions
a) Explain the relationships of R, L and C elements?
$(5 \mathrm{X} 2=10 \mathrm{M})$
CO
Blooms
Level
b) What is the significance of back e.m.f?

CO1
c) What is meant by slip of an induction motor?

CO2
d) Draw the circuit symbol for a PNP and NPN transistors

CO3
e) What are the main components of a CRT?

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Classify Network elements and give their volt-ampere relations.
b) A circuit consists of $2,4,10$ and 20 resistors connected in parallel. A total current of 10 A flows into the circuit supplied voltage is 30 V , determine total resistance and current in each resistor.

$$
6 \mathrm{M} \quad \mathrm{CO} 1
$$

OR

3. a) State and explain Kirchhoff's current law with suitable examples.

6M CO1
b) Determine the current through 6 resistor and the power supplied by the for the circuit shown in figure

UNIT-II

4. a) Mention the applications of DC shunt and series motors?

6 M CO 2
b) A 6 pole wave wound dc generator is having 50 slots with 25 conductors per slot and rotating at 1500 rpm . The flux per pole is 0.015 wb , calculate the emf generated?

6M CO2 L3
5. a) Derive an expression for the torque of a dc motor.
b) A 230 V motor has an armature circuit resistance of 0.6 ohm . If the fullloaded armature current is 30 A and no load armature current is 4 A , find the change in back e.m.f. from no load to full load.

UNIT-III

6. a) Explain how to determine the regulation of alternator by synchronous impedance method
b) Explain the Principle operation of Transformer?

OR

7. a) Explain the principle of operation of 3-phase induction motor with neat sketch?
b) A $230 / 400 \mathrm{~V}$ single phase transformer has 800 turns on primary. The maximum flux density in the core is $1.5 \mathrm{~Wb} / \mathrm{m}^{2}$. Calculate the number of turns on secondary, area of cross section and maximum flux in the core.

6 M CO 3

UNIT-IV

8. a) Explain with a neat diagram working of bridge wave rectifier?
b) Explain the operation of PNP transistor and draw its characteristics.

OR

9. a) Explain the working of a P-N Diode in forward bias and reverse bias?

6M CO4
6 M CO 4

UNIT-V

10. a) Explain the principle of operation of the Cathode ray tube?
$6 \mathrm{M} \mathrm{CO5}$
b) Write the applications of the CRO?

OR

11. a) What is the earthing? What is the purpose of earthing?
$6 \mathrm{M} \mathrm{CO5}$
$6 \mathrm{M} \mathrm{CO5}$
b) Discuss about the types of wires?
$6 \mathrm{M} \quad \mathrm{CO} 2 \quad \mathrm{~L} 3$
6 M CO 2

6 M CO 3
6 M CO 3
b) Draw the circuit diagram of full wave rectifier and explain its operation

6 M CO
6 M CO 4

6M CO5
\square

Code: 20AC21T

| B.Tech. || Semester Regular Examinations October 2021
Differential Equations and Vector Calculus
(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $(5 \times 2=10 \mathrm{M}) \quad$ co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Evaluate $\frac{1}{D^{2}-4 D+4} x e^{2 x}$.
b) Solve the Euler's equation $x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=0$.
c) Find the general solution of $p+q=p q$ CO3 L2
d) Prove that $\nabla \cdot \bar{r}=3$ CO4 L3
e) State Green's theorem. CO5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
Marks CO

UNIT-I

2. Solve $\left(D^{2}-4 D\right) y=e^{x}+\sin 3 x \cos 2 x$.

12M CO1

OR

3. Solve the following equation by the method of variation of parameters

$$
\left(D^{2}+3 D+2\right) y=e^{x}+x^{2}
$$

UNIT-II

4.

Solve $(1+2 x)^{2} \frac{d^{2} y}{d x^{2}}-6(1+2 x) \frac{d y}{d x}+16 y=8(1+2 x)^{2}$
12M CO2

OR

5. In an L-C-R circuit, the charge q on a plate of a condenser is given by $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=E \sin p t$. The circuit is tuned to resonance so that $p^{2}=\frac{1}{L C}$. If initially the current i and the charge q be zero, show that, for small values of R / L, the current in the circuit at time t is given by $\frac{E t}{2 L} \sin p t$

Code: 20AC21T

UNIT-III

6. a) Solve $p(1+q)=q z$
b) Solve $x\left(z^{2}-y^{2}\right) p+y\left(\mathrm{x}^{2}-z^{2}\right) \mathrm{q}=z\left(\mathrm{y}^{2}-x^{2}\right)$

6M CO3
6M CO3

OR

7. Solve by the method of separation of variables $u_{x}=2 u_{t}+u$ where $u(x, 0)=6 e^{-3 x}$

12M CO3

UNIT-IV

8. a) Fine the directional derivative of $\phi(x, y, z)=x y+y z+z x$ in the direction of $-2 \vec{i}+\vec{j}+2 \vec{k}$ at the point ($1,2,0$).

6M CO4
b) Find the angle between the surfaces
$x^{2}+y^{2}+z^{2}=12$ and $x^{2}+y^{2}-z=12$ at $(2,2,2)$.
$6 \mathrm{M} \mathrm{CO4}$

OR

9. a) Find the constant a, b and c such that the vector field defined by $\vec{F}=\left(4 x y+a z^{3}\right) \vec{i}+\left(b x^{2}+3 z\right) \vec{j}+\left(6 x z^{2}+c y\right) \vec{k} \quad$ is irrotational. With these values of a, b and c determine a scalar function ϕ such that $\overrightarrow{\mathrm{F}}=\nabla \phi$.

8M CO4
b) Prove that $\left(\frac{\vec{r}}{r^{3}}\right)=0$

4M CO4

UNIT-V

10. Verify Gauss's divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \vec{i}+\left(y^{2}-z x\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}$ take over the rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.

12M CO5

OR

11. Verify Stokes' theorem for the vector field $\vec{F}=(2 x-y) \vec{i}-y z^{2} \vec{j}-y^{2} z \vec{k}$ over the upper half surface of $x^{2}+y^{2}+z^{2}=1$ bounded by its projection on the $x y$ plane.

| B.Tech. || Semester Regular Examinations October 2021

Data Structures through Python
(Common to CSE and AI\&DS)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1.Answer ALL the following short answer questions	$(5 \times 2=10 \mathrm{M})$	CO	Blooms Level
a) Define linear data structure.	CO 1	L 1	
b) Differentiate between global vs local variables.	CO 2	L 2	
c) Define Inheritance	CO	L 1	
d) What are the features of stacks?	CO 4	L 2	
e) List out the steps involved in deleting a node from a binary search tree.	CO 4	L 1	

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=\mathbf{6 0}$ Marks)

		Marks	CO	Blooms Level
	UNIT-I			
2.	Illustrate, the various ways to iterating over a Lis	12M	CO1	L3
	OR			
3.	Develop a python program to generate all possib of any given phone number -use dictionaries.	12M	CO1	L4
	UNIT-II			
4.	Discuss about string processing in python	12M	CO 2	L3
	OR			
5.	Write short notes on			
	a).Actual vs. Formal arguments	6M	CO 1	L2
	b).Mutable vs. Immutable Arguments	6M	CO1	L2

UNIT-III

6. a) Write Python Program to Demonstrate Multiple Inheritance with Method Overriding.

8M CO3 L6
b) Explain try and catch block with example
$4 \mathrm{M} \mathrm{CO3}$
L2
OR
7. Write Python code to create a function named move_rectangle() that takes an object of Rectangle class and two numbers named dx and dy. It should change the location of the Rectangle by adding dx to the x coordinate of corner and adding dy to the y coordinate of corner.

UNIT-IV

8. Explain Stack ADT and its operations

12M CO4
L3
OR
9. Explain how queues can be implemented using Linked List

12M CO4
L3
UNIT-V
10. Define Tree. Explain the tree traversals with algorithms and examples.

12M CO4 L2
OR
11. a) Construct a max heap for the following: $\{12,15,9,8,10,18,7,20,25\}$
b) Build an AVL tree with the following values: $\{15,20,24,10,13,7,30,36,25,42,29\}$

$6 M$	CO	L 6

\square
Hall Ticket Number :

Code: 20A324T-A

| B.Tech. || Semester Regular Examinations October 2021

Engineering Drawing

(Common to CSE-A,B and AI\&DS)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$\underset{\substack{* * * * * * * * * \\ \text { UNIT-I }}}{\substack{\text { Marks co } \\ \text { Blooms } \\ \text { Level }}}$

UNIT-I

1. Construct a conic when the distance of its focus from its directrix is equal to 50 mm and its eccentricity is $2 / 3$.Name the curve, mark its major axis and minor axis. Draw a tangent at any point, P on the curve.

OR
2. Draw an epicycloid of rolling circle of diameter 40 mm which rolls outside another circle (base circle) of 120 mm diameter for one revolution. Draw a tangent and normal at any point on the curve.

UNIT-II

3. a) Two points A and B are in the H.P. The point A is 30 mm in front of the V.P., while B is behind the V.P. The distance between their projectors is 75 mm and the line joining their top views make an angle of 45° with XY. Find the distance of the point B from the V.P.
b) The top view of a 75 mm long line measures 55 mm . The line is in the V.P., its one end being 25 mm above the H.P .Draw its projections.

OR

4. One end A of a line $A B, 75 \mathrm{~mm}$ long is 20 mm above the H.P. and 25 mm in front of the V.P. The line is inclined at 30° to the H.P. and the top view makes 45° with the V.P. Draw the projections of the line and find the true inclinations with the vertical plane.

UNIT-III

5. A regular hexagon of 40 mm side has a corner in the H.P. Its surface is inclined at 45° to the H.P. and the top view of the diagonal through the corner which is in the H.P. makes an angle of 60° with the V.P. Draw its projections.

OR

6. An equilateral triangular plane ABC of 30 mm side is parallel to V.P \& perpendicular to H.P and 25 mm away from V.P. Draw its projections when one of its sides is (i) Parallel to H.P
(ii) Perpendicular to H.P (iii) inclined at 45° to the HP.

UNIT-IV
7. Draw the projections of a hexagonal pyramid, base 30 mm side and axis 60 mm long, having its base on the H.P. and one of the edges of the base inclined at 45° to the V.P.

OR

8. A square prism, base 40 mm side and height 65 mm , has its axis inclined at 45° to the H.P. and has an edge of its base, on the H.P. and inclined at 30° to the V.P. Draw its projections.

UNIT-V

9. Draw the Isometric projection of a hexagonal prism when it is resting on ground on a rectangular face with axis parallel to V.P. The side of base of the prism is 30 mm and axis length is 60 mm .

14M C5
L3

OR

10. An isometric view of a block is shown in Figure. Draw the Front view and Top view.

