Γ	Hall	Ticket Number :							
L	Cod	e: 20AC22T	R-20						
Code: 20AC22T I B.Tech. II Semester Regular Examinations October 2021 Applied Physics									
	Мах	(Common to CSE and AI&DS) Marks: 70 Tim	e: 3 Hours						
	Note	 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 							
		PART-A (Compulsory question)							
	1.	Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$	CO Blooms Level						
	b c d) What is critical angle?) What are direct bandgap semiconductors? Give example							
	е) Write any two applications of nanomaterials.							
		PART-B Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$ M	larks)						
			Marks CO Blooms Level						
2.	a)	UNIT–I Explain the formation of Newton's rings. How do you determine the wavelength of an unknown source by using Newton's rings?	8M						
	b)	In a Newton's rings experiment the diameter of the 15 th ring is found to be 0.59 cm and that of the 5 th ring is 0.336 cm. If the radius of curvature of the lens is 100 cm, find the wave length of the light.	4M						
		OR							
3.	a)	Write a short note on quarter and half-wave plates.	8M						
	b)	Calculate the thickness of quarter wave and half wave plates of wavelength 5890 A ⁰ , μ_0 =1.654 and μ_e =1.582.	4M						
4.	a)	What is local field? Deduce an expression for it?	8M						
	b)	The relative permittivity of sulphur is 4.0, calculate its atomic polarizability (given that sulphur in cubic form has a density of 2.08 X 10^3 Kg/m ³ and its atomic weight is 32)	4M						
		OR							
5.	a) b)	Differentiate soft and hard magnetic materials. Write few applications of magnetic materials. A magnetic material has a magnetization of 3000 amp/m and flux density of	8M						
	U)	0.005 weber/m ² . Calculate the magnetic force and the relative permeability of the material.	4M						
			Dage 1 of 3						

		Code	. 20AC							
		UNIT–III								
6.	a)	State and prove Gauss divergence theorem	8M							
	b)	State the four Maxwell's equations	4M							
		OR								
7.	a)) Discuss in detail about the attenuation and various losses in optical fibers.								
	b)	In an optical fiber, the fractional refractive index change is 0.14 and refractive index of cladding is 1.3. Calculate refractive index of core.	4M							
		UNIT-IV								
8.	a)) What is Hall effect? Derive an expression for Hall coefficient.								
	b)	Write any four applications of Hall effect.								
		OR								
9.	a)	Derive an expression for the carrier concentration in an n-type semiconductors								
	b)	The electron concentration in an n-type semiconductor is 5x10 ⁻¹⁷ m ⁻³ . Calculate the conductivity of the material if the drift velocity of electron is 350 m/s in an								
		electric field of 1000 v/m.	4M							
		UNIT–V								
10.	a)	Explain BCS theory of superconductivity. How it explains zero resistivity	8M							
	b)	Explain Meissner's effect in superconductors.	4M							
		OR								
11.		With a neat sketch explain the principle, construction and working of scanning								
		electron microscope.	12M							
		*** End ***								

		~~	
Code: 20A223T	K-	20	
I B.Tech. II Semester Regular Examinations October 20 Basic Electrical and Electronics Engineering (Common to CE, CSE and AI & DS) Max. Marks: 70		3 Hou	ırs

 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 			
(Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$		СО	Blooms Level
a) Explain the relationships of R, L and C elements?		CO1	L1
b) What is the significance of back e.m.f?		CO2	L1
c) What is meant by slip of an induction motor?		CO3	L1
d) Draw the circuit symbol for a PNP and NPN transistors		CO4	L1
e) What are the main components of a CRT?		CO5	L1
PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =	60 Mar	ks)	
	Marks	со	Blooms Level
UNIT–I 2. a) Classify Network elements and give their volt-ampere relations.	6M	CO1	L1
 b) A circuit consists of 2 , 4 , 10 and 20 resistors connected in parallel. A total current of 10 A flows into the circuit supplied voltage is 30V, determine total resistance and current in each resistor. 	6M	CO1	L3
OR			
3. a) State and explain Kirchhoff's current law with suitable examples.	6M	CO1	L1
 b) Determine the current through 6 resistor and the power supplied by the for the circuit shown in figure 			
$20 \text{ V} \neq 2\Omega \qquad 3\Omega \neq 10$			
	6M	CO1	L3
4. a) Mention the applications of DC shunt and series motors?	6M	CO2	L1
b) A 6 pole wave wound dc generator is having 50 slots with 25 conductors	UNI	002	
per slot and rotating at 1500 rpm. The flux per pole is 0.015 wb, calculate the emf generated?	6M	CO2	L3
UK UK			

Hall Ticket Number :

Code: 20A223T

5.	a)	Derive an expression for the torque of a dc motor.	6M	CO2	L2
	b)	A 230 V motor has an armature circuit resistance of 0.6 ohm. If the full-			
		loaded armature current is 30A and no load armature current is 4A, find			
		the change in back e.m.f. from no load to full load.	6M	CO2	L3
		UNIT–III			
6.	a)	Explain how to determine the regulation of alternator by synchronous			
		impedance method	6M	CO3	L1
	b)	Explain the Principle operation of Transformer?	6M	CO3	L3
		OR			
7.	a)	Explain the principle of operation of 3-phase induction motor with neat			
		sketch?	6M	CO3	L1
	b)	A 230/400 V single phase transformer has 800 turns on primary. The			
		maximum flux density in the core is 1.5 Wb/m ² . Calculate the number of			
		turns on secondary, area of cross section and maximum flux in the core.	6M	CO3	L3
		UNIT–IV			
8.	a)	Explain with a neat diagram working of bridge wave rectifier?	6M	CO4	L2
	b)	Explain the operation of PNP transistor and draw its characteristics.	6M	CO4	L1
		OR			
9.	a)	Explain the working of a P-N Diode in forward bias and reverse bias?	6M	CO4	L1
	b)	Draw the circuit diagram of full wave rectifier and explain its operation	6M	CO4	L1
		UNIT–V			
10.	a)	Explain the principle of operation of the Cathode ray tube?	6M	CO5	L1
	b)	Write the applications of the CRO?	6M	CO5	L1
		OR			
11.	a)	What is the earthing? What is the purpose of earthing?	6M	CO5	L1
	b)	Discuss about the types of wires?	6M	CO5	L1
	,	*** End ***			

Hall Ticket Number :		7
Code: 20AC21T	R-20	
I B.Tech. II Semester Regular Examinations October Differential Equations and Vector Calculus (Common to All Branches) Max. Marks: 70	2021 Time: 3 Hour	s
**************************************		-
<u>PART-A</u> (Compulsory question)		
Answer ALL the following short answer questions $(5 \times 2 = 10M)$	(L) .	ooms evel
Evaluate $\frac{1}{D^2 - 4D + 4} xe^{2x}$.	CO1	L2
Solve the Euler's equation $x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = 0$.	CO2	L3
Find the general solution of $p+q = pq$	CO3	L2
Prove that $\nabla . \overline{r} = 3$	CO4	L3
State Green's theorem.	CO5	L3
PART-B	- (0 Morka)	
Answer <i>five</i> questions by choosing one question from each unit (5 x 12	Marks CO	Bloo
UNIT–I		Lev
Solve $(D^2 - 4D)y = e^x + \sin 3x \cos 2x$.	12M co1	
OR		
Solve the following equation by the method of variation of parameters		
$\left(D^2+3D+2\right)y=e^x+x^2$	12M CO1	
UNIT–II		
Solve $(1+2x)^2 \frac{d^2y}{dx^2} - 6(1+2x)\frac{dy}{dx} + 16y = 8(1+2x)^2$	12M co2	2
OR		
In an L-C-R circuit, the charge q on a plate of a condenser is given $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = E \sin pt$. The circuit is tuned to resonance so	that	
$p^2 = \frac{1}{LC}$. If initially the current <i>i</i> and the charge <i>q</i> be zero, show that , for	small	
values of R/L, the current in the circuit at time t is given by $\frac{Et}{2L}\sin pt$		

UNIT–III									
6.	a)	Solve $p(1+q) = qz$	6M	CO3					
	b)	Solve $x(z^2 - y^2)p + y(x^2 - z^2)q = z(y^2 - x^2)$	6M	CO3					
		OR	0101	003					
7.		Solve by the method of separation of variables							
		$u_x = 2u_t + u$ where $u(x, 0) = 6e^{-3x}$	12M	CO3					
		UNIT–IV							
8.	a)	Fine the directional derivative of $W(x, y, z) = xy + yz + zx$ in the direction of							
		$-2\vec{i} + \vec{j} + 2\vec{k}$ at the point (1, 2, 0).	6M	CO4					
	b)	Find the angle between the surfaces							
		$x^{2} + y^{2} + z^{2} = 12$ and $x^{2} + y^{2} - z = 12$ at (2, 2, 2).	6M	CO4					
		OR							
9.	a)	Find the constant a, b and c such that the vector field defined by							
		$\vec{F} = (4xy + az^3)\vec{i} + (bx^2 + 3z)\vec{j} + (6xz^2 + cy)\vec{k}$ is irrotational. With these values							
		of a, b and c determine a scalar function w such that $\vec{F} = \nabla w$.	8M	CO4					
	b)	Prove that $\left(\frac{\vec{r}}{r^3}\right) = 0$							
			4M	CO4					
10.		UNIT-V							
10.		Verify Gauss's divergence theorem for $\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$							
		take over the rectangular parallelepiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$.	12M	CO5					
4.4		OR							
11.		Verify Stokes' theorem for the vector field $\vec{F} = (2x - y)\vec{i} - yz^2\vec{j} - y^2z\vec{k}$ over the							
		upper half surface of $x^2 + y^2 + z^2 = 1$ bounded by its projection on the <i>xy</i> -	4014						
		plane. *** End ***	12M	CO5					
		Eliu							

-	Hall Ticket Number :	R-20		
C	ode: 20A521T]	
	I B.Tech. II Semester Regular Examinations October 202 Data Structures through Python	I		
	(Common to CSE and AI&DS)			
Μ		Time: 3 H	ours	

No	 bte: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 			
	PART-A			
	(Compulsory question)		Plor	me
.An	swer ALL the following short answer questions $(5 \times 2 = 10M)$	CO	Bloc Lev	
a)	Define linear data structure.	CO1		L1
))	Differentiate between global vs local variables.	CO2		L2
;)	Define Inheritance	CO3		L1
d)	What are the features of stacks?	CO4		L2
e)	List out the steps involved in deleting a node from a binary search tree.	CO4		L1
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$	Marks)		5.
		Marks	СО	Bloo Lev
	UNIT–I			
	Illustrate, the various ways to iterating over a List	12M	CO1	
	OR			
	Develop a python program to generate all possible spellings of the last four digi			
	of any given phone number –use dictionaries.	12M	CO1	
	UNIT–II			
•	Discuss about string processing in python	12M	CO2	I
	OR			
	Write short notes on	014		
	a).Actual vs. Formal arguments	6M	CO1	
	b).Mutable vs. Immutable Arguments	6M	CO1	
	UNIT-III	d		
. a	Write Python Program to Demonstrate Multiple Inheritance with Metho Overriding.	8M	CO3	
b		4M	CO3	
, D	OR		003	•
	Write Python code to create a function named move_rectangle() that takes a	n		
•	object of Rectangle class and two numbers named dx and dy . It should chang			
	the location of the Rectangle by adding dx to the x coordinate of corner and addin	g		
	dy to the y coordinate of corner.	12M	CO3	
	UNIT–IV			
	Explain Stack ADT and its operations	12M	CO4	I
	OR			
	Explain how queues can be implemented using Linked List	12M	CO4	I
	UNIT–V			
	Define Tree. Explain the tree traversals with algorithms and examples.	12M	CO4	I
	OR			
) Construct a max heap for the following: {12, 15, 9, 8, 10, 18, 7, 20, 25}	6M	004	I
. a b			CO4	L

	Hal	Il Ticket Number :														_	
	Cod	de: 20A324T-A		I[J	1	J	1	1		1	R-	20		
		IB.Tech	n. II S	eme			-					Oc	tober	2021			
	Engineering Drawing (Common to CSE-A,B and AI&DS)																
	Mo	ax. Marks: 70		100		1011	10 C	3L-7	, b u	nu /		5		Time	e: 3 Hc	ours	
	Answer any <i>five full</i> questions by choosing one question from each unit (5 x 14 = 70 Marks)																
							4.4.4								Marks	со	Blooms
						ι	JNIT-	-1									Level
1.		Construct a conic w											•				
		and its eccentricity Draw a tangent at a							ark it	s ma	ijor a	ixis a	and mir	ior axis.	14M	C1	L1
2.		Draw an epicycloid		•													
		circle (base circle) normal at any point				lame	eter 10		ie re	voiuti	on. I	Jraw	a tang	jent and	14M	C1	L1
						U	NIT-	·II									
3.	a)	Two points A and B B is behind the V.I															
		joining their top vie															
	b)	B from the V.P. The top view of a 7	75 mr	n lon	a line	me	asure	s 55	mm	The	line i	is in t	he V P	its one	7M	C2	L2
	0)	end being 25 mm a			•			orojec				5 11 1		, 13 010	7M	C2	L2
4.		One end A of a line V.P. The line is inc				-											
		Draw the projection													14M	C2	L2
							NIT–										
5.		A regular hexagon 45° to the H.P. and															
		H.P. makes an ang		-			P. D	-		•		onner	WINCH		14M	C3	L3
6.		An equilateral trian	aular	nlan	ΔAR	Cof	OR	m sid	la is r	harall	al to	VP	& norne	ndicular			
0.		to H.P and 25mm	•	•					•				• •				
		Parallel to H.P (ii)	Perp	endic	ular	to H.	P (iii)	incl	ined	at 45	⁰ to t	he Hl	∍.		14M	C3	L2
_			,				NIT–			~ ~							
7.		Draw the projection long, having its bas			•												
		to the V.P.													14M	C4	L5
8.		A square prism, ba	100 A	Դ տտ	side	and	OR beig		mm	has	ite a	vis in	clined	at 45^0 to			
0.		the H.P. and has a	an ed														
		Draw its projections	s.				NIT-	V							14M	C4	L1
9.		Draw the Isometric	proie	ectior	n of a				ism v	/hen	it is r	estin	a on ar	ound on			
		a rectangular face and axis length is 6	with	axis p			V.Р.	•					• •		14M	C5	L3
10		An isomotric view o	of a b	lock i	c ch		OR D Eig		Drow	tha	Front	viou	and T				
10.		An isometric view o	מאונ	IOCK I	s sho	JWIT	n rig	ure.	Diaw	line	FION	. view		op view.			
				×-8-	P	小 別 上		Š	18								

100/1

ls

*** End ***

14M C5 L3