Hall 1	Ficke	et Number :									
Code:	: 4PI	3324 R-14									
M.Te	ech	n. II Semester Regular & Supplementary Examinations June 2017 DSP Processors and Architectures (Common to DECS, ES & VLSISD)									
Max. Answ		ks: 60 Il five units by choosing one question from each unit (5 x 12 = 60 Marks ********									
1.	a)	Also neatly sketch the typical signals in a DSP scheme.									
	b)	Describe the basic feature that should be provided in the USP a be used to implement the Nth order FIR filter $y(n) = \sum_{i=0}^{L} \frac{1}{h_{i}(i)x(n-i)}$; n=0,1,2, Where x(n) denotes the input sample ,y(n) the output sample and									
		h(i) denotes the ith filter co-efficient. OR	71								
2.	a)		51								
	b)	Briefly explain the A/D conversion errors.	71								
3.	a)	Implement a 3-bit shift right, barrel shifter. Tabulate the outputs fof different bit shifts.	81								
	b)	Explain the different frequently used techniques to prevent overflow and underflow conditions occurring in MAC unit.	41								
		OR									
4.	a)	 a) Explain with block diagram the implementation of 8 tap FIR filter,(i) pipelin using 8 MAC units and (ii) parallel using 2 MAC units. 									
	b)	Identify the Addressing modes of the operands in each of the following instructions and their operation. (i) ADD #1234h ,(ii) ADD B	41								
5.	a)	Explain any three data addressing modes of TMS320C54xx. Give one example for each.	81								
	b)	With a neat sketch, describe the Host port interface signal. OR	41								
6.	a)	Assume that the contents of AR3 to be 400h, what will be its content after each of the following TMS320C54xx addressing mode is used. Assume that the contents of AR0=40h. (i) *AR3+ 0; (ii) *AR3+; (iii) *AR3 + 0B;	81								
	b)	Describe the operation of the following instructions of TMS320C54XX processor. (i) MPY *AR2-,*AR4 + 0,B ; (ii) SSBX SXM ; (iii)RPT #k	41								

UNIT–IV

7.	a)	What values are represented by the 16 bit fixed point number N=2000h in the Q0,Q7 and Q15 notations.	8M
	b)	Briefly explain the IIR filter. With the help of block diagram, explain second order IIR filter.	4M
		OR	
8.	a)	Explain how the bit-reversed index generation can be done in 8 point FFT. Also write a TMS320C54xx program for 8 point DIT FFT bit reversed index generation.	8M
	b)	Explain, how scaling prevents overflow conditions in the butterfly computation.	4M
9.	a)	What are interrupts? How interrupts are handled by the C54xx DSP processor.	8M
	b)	Explain an interface between ban A/D converter and the TMS320C54xx processor in the programmed I/O mode.	4M
		OR	
10.	a)	Explain PCM3002 CODEC, with the help of a block diagram.	9M
	b)	Draw the I/O interface timing diagram for the read-write-read sequence of operation.	3M

6	Code: 4PB322											
•	M.Tech. II Semester Regular & Supplementary Examinations June 2017											
	Embedded Software Design											
	(Embedded Systems)											
	Max. Marks: 60 Time: 3 Hours											
1	Answer all five units by choosing one question from each unit (5 x 12 = 60 Marks)											
	UNIT–I											
a)	· ·											
	80486 microprocessors.											
b)	Explain memory management unit in a Pentium processor											
-)	OR											
a) h)	With neat diagram, explain a circuit that generates wait states by delaying ADS.											
b)	Explain super scalar architecture in a Pentium processor											
a)	UNIT-II Illustrate a laser printer design as an algorithm with neat sketch											
b)	Outline the checklist that can help you determine which RTOS products are suitable for											
0)	your project											
	OR											
a)	How the separation of hardware and software design imposes development costs											
b)	From the perspective of hardware designer and software designer, explain how to solve											
	the Big Endian / Little Endian Problem.											
	UNIT-III											
a)	Outline a memory map of a generic microprocessor with how the system uses memory with the execution environment for a new system.											
b)	What is an ISR? Give the flow chart for a Burglar alarm algorithm											
5)	OR											
a)	What is watchdog timer? Give the flow diagram.											
b)	List the advantages and disadvantages of the debug kernel											
,												
a)	What is JTAG? Give a simple schematic representation of a JTAG loop for three circuit elements.											
b)	What is Overlay Memory? Explain.											
	OR											
a)	Explain the advantages and disadvantages of back ground debug mode											
b)	Discuss about White box, Black box and Gray box Testing.											
	UNIT–V											
a)	Discuss various methods used to dump the code in to target system											
b)	Discuss various kinds of buffers & explain the reasons for occurring over and under -run states											
	OR											
a)	Explain the importance of Emulation and Debugging techniques in embedded system											

Hall	Tick	et Number :													1
Code: 4PB323															
M.Tech. II Semester Regular & Supplementary Examinations June 2017															
Hardware Software Co-Design															
(Common to ES & VLSISD) Max. Marks: 60 Time: 3 Hours															
Answer all five units by choosing one question from each unit (5 x 12 = 60 Marks)															
								UNI	T–I						
1.		Construct a using an exa			odel	for	capt	uring	the	beha	avior	of C	co-synth	iesis system	12M
		doing an oxa	mpic	,				O	र						12101
2.	a)	State and ex	plain	vari	ous	Co-d	esigi	n lan	guag	es.					6M
	b)	Describe the	distr	ribute	ed sy	rstem	יCo ו	Synt	hesis	6.					6M
								UNI	r 11						
3.		Elucidate wh	at is	syst	em s	pecia	aliza			_ xplai	n its	tech	niques i	n detail	12M
				-				O	र	•			·		
4.	a)	Write short n	otes	on s	hare	d me	emor	y cor	nmur	nicati	on se	chem	ne		6M
	b)	Describe an a	archi	itectu	ure th	nat c	an be	e use	ed in o	data	domi	inate	d applic	ations	6M
5.		What is mear	nt by	, com	npilat	ion?				_ ical c	onsi	derat	ions in	a Compiler	
		Development	•		•									·	12M
								O							
6.	a)	With the help			0		•				nbed	ded /	Architec	ture.	6M
	b)	Elucidate the	con	cept	of re	etarg	etabl	e coi	npile	r					6M
								υΝΙΤ	-IV	7					
7.		With a suitab		•		cplai				logy	invol	ved i	n the C	o-design	
		Computation	al m	odel.				-	_						12M
0	c)		مانهم	ting				O			honi				сM
8.	a) b)	Classify coor Write short n		•				•			nanis	sms			6M 6M
	5)	White short h	0100				, 001	npoi		•					OW
								UNI	Г—V						
9.		Summarize v about them b		-	/pes	of s	ystei	n lev	/el s	oecifi	catio	n sc	hemes	and discuss	12M
			nen)	y				O	र						1 Z I VI
10.	a)	Elaborate bri	efly a	abou	t var	ious	Mult			e vali	datio	n ap	proache	es.	6M
	b)	List characte	•									•			6M
							**	*							

Hall Ticket Number :												
Code	Code: 4PB325											
M.Tech. II Semester Regular & Supplementary Examinations June 2017												
		Modelling and Synthesis through Verilog HDL										
Max		(Embedded Systems) arks: 60 Time: 3	Hours									
		all five units by choosing one question from each unit ($5 \times 12 = 60 N$										
		UNIT–I										
1.	a)	6										
		about various descriptive Styles.	6M									
	b)		6M									
0	-	OR	CN4									
2.	a) b)		6M									
	b)	Write brief notes on language conventions in Verilog. UNIT-II	6M									
3.	a)		6M									
	b)											
	,	OR										
4.	a)	Illustrate the initialization of sequential primitives with relevant examples.	6M									
	b)	Explain briefly the importance of Pulse rejection?	6M									
		UNIT–III										
5.	a)	Implement NAND gate using MOS switch and write a suitable test bench?	6M									
	b)	Summarize about the delay constructs in Verilog.										
		OR										
6.	a)											
	b)	Continuous Assignments. Explain the fork & join statements and when they are used.	6M 6M									
	0)	UNIT-IV	0101									
7.		Explain the importance of the Don't cares, Tri-State outputs and the Tri-state	ate									
		Buffers?	12M									
		OR										
8.	a)	Explain the Synthesis of Edge-Triggered D-Flip Flop.	6M									
	b)	Illustrate the synthesis of a basic Finite State Machines in verilog.	6M									
	,											
9.	a)		6M									
	b)	Explain briefly about the synthesis of Multi-cycle operations? OR	6M									
10.		Discuss the Synthesis of Case and Conditional Statement. Explain them w	vith									
10.		suitable examples.	12M									

Hall ⁻	Ficke	et Number :									
Code: 4PB326											
		ch. II Semester Regular & Supplementary Examinations June 2017 Radio Frequency Identification (Embedded Systems)									
Max. Answ	-	rks: 60 Ill five units by choosing one question from each unit (5 x 12 = 60 Marks) ********* UNIT-I	-								
1.	a)	Explain optical Character Recognition system.	6M								
	b)	Explain the process of Information processing in the Transponder.	6M								
		OR									
2.	a)	Distinguish the various Identification Systems with system Parameters	6M								
	b)	Explain the selection criteria for RFID systems	6M								
0	、										
3.	a) ⊾	Explain Electromagnetic Backscatter coupling	6M								
	b	Define and explain Active and Passive modes of Near Field Communication (NFC)	6M								
4.		OR Evaluin the collection of a quitable frequency for Inductively equaled REID									
4.		Explain the selection of a suitable frequency for Inductively coupled RFID system with suitable example.	12M								
5.	a)	Explain the significance of Transponder with memory function	6M								
	b)	Explain Dual Interface card.	6M								
		OR									
6.	a)	Explain the Transponder with sensor function measurements.	6M								
	b)	Draw and Explain Frequency Shift Keying Modulation procedure.	6M								
		UNIT–IV									
7.	a)	Explain LRC and CRC Procedures	6M								
	b)	Explain RF Interface Protection by Cryptographic Measures	6M								
8.		OR Draw and Explain the Anti-collision procedures through FDMA and TDMA.	12M								
0.											
9		Explain on the following RFID Applications:									
		(i) Contactless Smart Cards	6M								
		(ii) Electronic Passport Transport Systems	6M								
		OR									
10.		Explain any Two NFC applications of RFID systems.	12M								
		at all all									

Hall Ticket Number :													
	Code: 4PB321											.]	
M.Tech. II Semester Regular & Supplementary Examinations June 2017													
Testing and Testability													
			(Coi	-				-					
	Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 12 = 60 Marks)												
711244			Jang	Une	****	*****					1 (3 × 12	2 - 00 Mai	K3 J
UNIT-I													
1.	Describe Gate	level and	d Eve	nt dri	ven		latio	า.					12M
•						OR							
2.	Classify Model	ling of dig	gital c	ircuit	s an	d exp	plain.						12M
						UNI	- 11						
3.	Explain in de	tail abou	it sind	ale s	stuck			_ multi	ple	stuck	k-at fault	s with an	
01	example of eac			9.0 0						0100			12M
						OR							
4.	Write short not	es on the	e follo	wing									
	(a) Fault de	etection a	and R	edun	dano	cy.							6M
	(b) Fault equivalence and fault location.												6M
					_			7					
5.	Explain Test p	ottorn ao	noroti	ion C				and	Siar	otur	o opolyci	6	12M
5.	Explain rest p	allem ge	nerau	юп, с	synu	OR	: 1851	anu	Sigi	alure	e analysi	5.	12111
6.	Discuss differe	ent comp	ressio	n tec	hnio	-							12M
0.			00010		, in ing	uco.							
						UNIT	-IV						
7.	Describe board	d level ar	nd sys	stem	leve	DFT	app	roac	hes.				12M
						OR							
8.	Explain the foll	lowing											
	(a) Control	lability ar	nd Ab	sorba	ability	/							6M
	(b) Bounda	ary scan s	standa	ards									6M
								7					
0			I T ۸	^ 4		UNI	Γ						4014
9.	Discuss BIST	concepts	, JIA	Gies	sang	OR							12M
10.	Discuss about	Advance	A RIC	ST 00	ncer		necif	ic RI	ST ~	rchit	octures		12M
10.		Auvanue				** *	pecii	ום סו	01 a	Cint			