B.Tech. I Year Supplementary Examinations December 2017

Programming in C and Introduction to Data Structures

(Common to CE, EEE, ME and ECE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

1. a) Define computer system and explain different components in brief. 7M
b) What is meant by a computer language? Explain briefly about the computer languages used over the years

OR

2. a) Mention the steps involved in Creating and Running the Program? Explain each step in detail.
b) Describe standard C input and output functions with suitable C program.

UNIT-II

3. a) Explain the switch case control structure in C with syntax and flow chart.
b) Develop and implement an algorithm for reversing the digits of an integer.

OR
4. a) How do you declare a one dimensional array? Give its memory representation 7M
b) Describe the purpose of break and continue statements in C 7M

UNIT-III

5. a) Define Pointer. List the features of Pointers 7M
b) List and explain the storage classes in C 7 M

OR
6. a) What do you mean by functions? Give the structure of the functions and explain about the arguments and their return values.
b) Discuss passing pointer to a function with example 7M

UNIT-IV

7. a) Write a program in C to search for an element using linear search technique
8. Explain about any two sorting techniques with example.

UNIT-V

9. a) Write a program in C to convert given infix expression to postfix expression
b) Define Stack. Explain the push and pop operation of Stack

OR

10. Define queue and write the applications of queue. Explain the insert and delete operation of queue

Hall Ticket Number :										

Code: 4G513

B.Tech. I Year Supplementary Examinations December 2017
 Engineering Drawing

(Common to EEE, ECE, CSE and IT)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Draw a parabola when the distance between its focus and directrix is 50 mm . Also draw a tangent and a normal at a point 70 mm from the directrix.
b) Draw an ellipse having major axis is equal to 100 mm and the minor axis is equal to 70 mm by using concentric circle method.

OR

2. Draw an epi-cycloid of rolling circle of diameter 40 mm which rolls outside another circle (base circle) of 150 mm diameter for one revolution. Draw a tangent and normal at any point on the curve.

UNIT-II

3. a) Draw the projections of the following points, keeping the distance between the projectors as 25 mm on the same reference lines.
A -20 mm above HP and 30 mm in front of VP
$B-20 \mathrm{~mm}$ above $H P$ and 30 mm behind VP
$\mathrm{C}-20 \mathrm{~mm}$ below HP and 30 mm behind VP
D -20 mm below HP and 30 mm in front of VP
b) An 80 mm long line $P Q$ is inclined at 30 deg to V.P and is parallel to H.P. The end P of the line is 20 mm above the H.P and in front of the V.P, draw the projection of the line.

OR

4. $\quad A$ line $A B, 70 \mathrm{~mm}$ long, has its end $A 15 \mathrm{~mm}$ above $H P$ and 20 mm in front of VP. It is inclined at 30° to HP and 45° to VP. Draw its projections

UNIT-III

5. A regular pentagon of 30 mm sides is resting on HP on one of it's sides while it's opposite vertex (corner) is 30 mm above HP. Draw projections when side in HP is 30° inclined to VP.

OR

6. a) A Square plane with a 40 mm side has it's surface parallel to and 20 mm above the HP. Draw It's Projections, when (i) a side is parallel to VP (ii) a side is inclined at 30° to VP and (iii) All sides are equally inclined to VP.
b) A Pentagonal plane with a 30 mm side has an edge on the HP the surface of the Plane is inclined at 45° to the HP. Draw It's Projections?

UNIT-IV

7. a) A Hexagonal Prism having a base with a30 mm side and 75 mm long axis, has an edge it's base on the HP. Its axis is Parallel to the VP and inclined at 450 to the HP Draw its projections?
b) A Square Pyramid, having base with a 40 mm side and 60 mm axis is resting on its base on the HP. Draw its Projections when (i) a side of the is parallel to the VP and (ii) A side of the base is inclined at 30° to the VP

OR
8. A cone 40 mm diameter and 50 mm axis is resting on one generator on HP which makes 30° inclination Draw its projections?

UNIT-V

9. Figure:1 shows the orthographic projections of a Solid. Draw the Isometric view of the given solid.

FIG: 1

OR

10. Draw the following views of the object shown pictorially: (i) Front view.
(ii) Top view. (iii) Side view.

FIG:2

Hall Ticket Number :										

B.Tech. I Year Supplementary Examinations December 2017

Engineering Physics

(Common to All Branches)

Max. Marks: 70

Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain Newton's rings experiment by reflection to calculate the wavelength of a monochromatic light.
b) Derive Einstein's coefficients in LASERS.
c) Write the applications of optical fibers in industries and in medical field.

OR

2. a) Give the theory of Fraunhoffer diffraction due to single slit.
b) Explain population inversion. Mention important applications of LASERS
c) Derive the expression for acceptance angle and Numerical Aperture of an Optical fiber.

UNIT-II

3. a) Derive an expression for inter-planar spacing in cubic system.

b) Define Miller Indices and mention the steps involved. Sketch (110) \& (001)
the planes in a cube.
c) Define point defects? Explain different types of point defects. 4M

OR

4. a) Describe with suitable diagram the Laue method of X-ray diffraction and give the consequences
b) Explain different types of line defects. How the burger's vector is used to find the edge and screw dislocations? 5M
c) Write note on production of ultrasonics by piezoelectric method. 4M

UNIT-III

5. a) What are matter waves? Explain their properties.
b) Show that the energies of a particle in 1-D potential box are quantized. Explain the physical significance of wave function.
c) Calculate the de Broglie wavelength associated with an electron when it is raised to a potential of 1600 V .

OR

6. a) What are drawbacks of classical free electron theory of metals? How are these are removed by the application of quantum states?
b) Show that the Kronig - Penney model leads to existence energy bands in solids. 5M
c) Give the classification of solids into metals, semiconductors and insulators on the basis of band theory of solids.
UNIT-IV
7. a) Describe drift and diffussion currents in a semiconductor. Derive their expressions. 6M
b) Derive the equation of continuity equation for electrons. 5M
c) Draw I-V characteristic curve of a PN junction diode and explain. 3M
OR
8. a) Explain the origin of magnetic moment in atoms. Find the magnetic dipole moment due to orbital and spin motions of an electron. 5M
b) Explain hysteresis of a ferromagnetic materials. 4 M
c) Explain the classification of magnetic materials. 5M
UNIT-V
9. a) Explain Meissner effect. Write notes on magnetic levitation. 5M
b) Describe BCS theory of superconductivity. 5M
c) Write applications of superconductors. 4M
OR
10. a) Explain the basic principles of nanomaterials. 5M
b) Describe the process of "sol-gel" and "chemical vapour deposition" method of fabrication of nanomaterials. 6M
c) Write the applications of nanomaterials. 3M

Code: 4GC14

B.Tech. I Year Supplementary Examinations December 2017

Mathematics-I
(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Solve $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$
b) A body originally at $80^{\circ} \mathrm{C}$ cools down to $60^{\circ} \mathrm{C}$ in 20 minutes, the temperature of the air 7M being $40^{\circ} \mathrm{C}$. What will be the temperature of the body after 40 minutes from the original?

OR
2. a) Solve $\left(D^{3}-D\right) y=2 x+1+4 \cos x+2 e^{x}$
b) Using the method of variation of parameters, solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$

UNIT-II

3. a) Verify Rolle's theorem for $f(x)=(x+2)^{3}(x-3)^{4}$ in $(-2,3)$
b) In a plane triangle, find the maximum value of $\cos A \cos B \cos C$

OR
4. a) Verify Lagrange's mean value theorem for $f(x)=(x-1)(x-2)(x-3)$ in $(0,4)$
b) Given $x+y+z=a$, Find the maximum value of $x^{m} y^{n} z^{p}$

UNIT-III

5. a) Trace the curve $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$
b) Find the area lying between the parabola $y=4 x-x^{2}$ and the line $y=x$.

OR

6. a) Change the order of integration and evaluate $\int_{0}^{a} \int_{x / a}^{\sqrt{x / a}}\left(x^{2}+y^{2}\right) d x d y$
b) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d x d y d z$

UNIT-IV

7. a) Find the Laplace transform of $f(t)=|t-1|+|t+1|, \quad t \geq 0$
b) Apply convolution theorem to evaluate $L^{-1}\left(\frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}\right)$

OR

8. Solve $\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t, \quad$ if $x(0)=1, \quad x\left(\frac{\pi}{2}\right)=-1$

UNIT-V
9. a) Show that $\nabla^{2}\left(r^{n}\right)=n(n+1) r^{n-2}$
b) Evaluate $\int_{S} F \cdot d s$ where $F=4 x I-2 y^{2} J+z^{2} K$ and S is the surface bounding the region $x^{2}+y^{2}=4, z=0$ and $z=3$

OR

10. Verify Green's theorem for $\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y$, where C is bounded by $y=x$ and $y=x^{2}$
\square

Code: 4G311

R-14

B.Tech. I Year Supplementary Examinations December 2017

Electronic Devices \& Circuits

(Common to EEE \& ECE)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) State and explain Kirchhoff's voltage and current law.
b) A certain inductive coil takes 15 A when the supply voltage is $230 \mathrm{~V}, 50 \mathrm{~Hz}$. If the frequency is changed to 40 Hz , the current increases to 17.2 A . Calculate resistance and inductance of the coil.

OR

2. a) Define and Explain Maximum power transfer theorem.
b) Determine the Thevenin's voltage across 'ab' terminals in the circuit shown below.

3. a) What is a PN Junction diode and Explain the Characteristics of it.
b) Explain about the Breakdown Mechanisms in semiconductor diodes

OR

4. a) Explain the operation of FWR with centre tap transformer.
b) Also derive the following for this transformer. i)dc output voltage ii) dc output current iii) RMS output voltage. iv)Efficiency.

UNIT-III

5. a) Explain the Transistor construction and its Characteristics.
b) Explain about the DC Load line analysis of a Transistor.

OR
6. a) Explain the Need for Stabilization.
b) Write a note on Thermal Stability and Thermal Runaway.

UNIT-IV

7. a) Explain the construction JFET.
b) Draw and Explain output and Transfer characteristics of JFET.

OR

8. Describe about different FET Biasing techniques.

UNIT-V

9. Explain about the UJT and its characteristics

OR
10. Explain about the Tunnel Diode and its characteristics.

