На	пті	cket Number :											
	R-15												
Code: 5G121 I B.Tech. II Semester Supplementary Examinations May/June 2019													
		C Programming and Data Structures											
Ma	~ ~ ^ ^	(Common to All Branches) arks: 70 Time: 3 Ho											
		wer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	0015										
		UNIT–I											
1.	a)	What is meant by a pointer? Write a program to swap the values of two variables using pointers.											
	b)	Write a program to show the usage of pointer to structure.	7M										
	OR												
2.	a)	Demonstrate the use of &(address of) and *(value at address) operators	7M										
	b)	Write a program to show a function returning pointer.	7M										
3.		UNIT–II What is a structure? Explain the syntax of Structure declaration with example	7M										
З.	a) b)	How Selection sort is different from bubble sort?	7M										
	5)	OR	7 101										
4.	a)	Define Union. Explain its general syntax with one example.	7M										
	b)	Arrange the following integers in ascending order using Merge sort procedure.											
	,	39,48,62,18,23,34,58,12.	7M										
		UNIT–III											
5.	a)	Explain stack with basic Operations (push and pop).	7M										
	b)	Design the procedure to count number of parenthesis in an expression using Stack.	7M										
		OR											
6.		Compare Linear Queue and Circular Queue. Write a program to insert and delete from a circular queue.	14M										
		UNIT-IV											
7.		Implement Insertion, Deletion and search operations at any position in a singly											
		linked list.	14M										
		OR											
8.	a)	Write insertion and deletion functions for the doubly linked list.	7M										
	b)	Summarize Circular Linked List	7M										
		UNIT–V											
9.	a)	Construct a Binary tree T by using the following in order and post order traversals of T. In order: DKIBAEGHJFC											
		Post Order: K D I E A G B F C J H.	7M										
	b)	Explain various methods of representing graphs in memory.	7M										
10.		What is Binary Search Tree (BST)? How do we do search in BST? Write a procedure for insertion and deletion operations on BST.	14M										

Ha	III Ticket Number :	
Cod	le: 5G522	5
	I B.Tech. II Semester Supplementary Examinations May/June 2019	
	Engineering Graphics –II	
	(Common to CE and ME)	
Mc	IX. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks ********	
	UNIT–I	
1.	Draw the projections of a cone, base 75mm diameter and axis 100mm long, lying on the HP on one of its generators with the axis parallel to the VP.	14M
	OR	
2.	A pentagonal pyramid 30 mm side of base and axis 75mm long is resting on one of its base corner on H.P. Draw its projections, when its axis is inclined at 45 [°] to H.P and 30 [°] to V.P.	14M
	UNIT-II	
3.	A hexagonal prism of base side 30 mm and axis length 60 mm is resting on HP on one of its bases with two of the vertical faces perpendicular to VP. It is cut by a plane inclined at 60° to HP and perpendicular to VP and passing through a point at a distance 12 mm from the top base. Draw its front view, sectional top view and true shape of section.	14M
	OR	
4.	A cone, diameter of base 40 mm and axis 55 mm is resting on its base on the HP. It is cut by a section plane perpendicular to the VP and inclined at 75 ^o to the HP. The section plane passes through the apex. Draw the sectional top view and also obtain the true shape of the cut section.	14M
5.	A hexagonal prism of side of base 30 mm and axis 70 mm long is resting on its base on HP. such that a rectangular face is parallel to V.P. It is cut by a section plane perpendicular to V.P. and inclined at 30 ^o to HP. The section plane is passing through the top end of an extreme lateral edge of the prism. Draw the development of the lateral surface of the cut prism.	14M
	OR	
6.	Draw the development of the lateral surface of the frustum of the square pyramid of side of base 30 mm and axis 40 mm, resting on HP with one of the base edges parallel to V.P. It is cut by a horizontal cutting plane at a height of 20 mm.	14M
7.	Draw the isometric view of a pentagonal prism of base 60mm side, axis 100 mm long and resting on its base with a vertical face perpendicular to V.P.	14M

OR

B. Draw the isometric view of a square prism with the side of the base 40mm and length of the axis 70mm. when its axis is i) vertical ii) horizontal.
14M

UNIT–V

9. Draw the front view, top view and left side view for the following figure

10. Draw the isometric view for the following figure

14M

Hall Ticket Number :						
	,					R-15

Code: 5G521

I B.Tech. II Semester Supplementary Examinations May/June 2019

Engineering Mechanics - Dynamics

(Common to CE and ME)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

1. A particle moves along a horizontal path with a velocity of $v = (3t^2 - 6t)$ mis, where t is the time in seconds. If it is initially located at the origin 0, determine the distance traveled in 3.5 s, and the particle's average velocity and average speed during the time interval.

OR

2. The pitching machine is adjusted so that the baseball is launched with a speed of $v_A = 30$ m/s. If the ball strikes the ground at B (Fig.1), determine the two possible angles _A at which it was launched.

- 3. a) Discuss the rigid body translation.
 - b) A boy drops a stone from the top of well vertically downwards into it. The splash is heard by him after 6 seconds. Find the well depth by taking sound velocity as 400 m/s.

OR

- 4. The angular position of the rod OA (Fig.2) varies with time as $= -4t^2+24t-10$, where is in radians and t is in seconds. Determine
 - (a) the angular velocity and the angular acceleration of the rod at t = 4 s; and
 - (b) the total angle turned through by the rod between t = 0 and t = 4 s.

5. The 12-kg mass A in Fig. 3 slides with negligible friction in a semicircular trough of radius R = 2 m. The mass is launched at $= 30^{\circ}$ with the velocity v₀ = 4 m/s toward the bottom of the trough. Derive the following as functions of : (1) the speed of the mass; and (2) the contact force between the mass and the trough.

6. A force of F = 15 kg is applied to the cord as shown in Fig.4. Determine how high the 30 kg block A rises in 2 s starting from rest. Neglect the weight of the pulleys and cord.

UNIT-IV

7. In Fig.5, if the coefficient of kinetic friction between the 100-kg crate and the plane $\mu_k=0.25$, determine the compression x of the spring required to bring the crate momentarily to rest. Initially the spring is un-stretched and the crate is at rest.

OR

- 8. a) Discuss conservation of momentum
 - b) Explain impact of jet on vane

UNIT-V

9. The 100 kg wheel has a radius of gyration about its center 0 of $k_0 = 500$ mm (Fig.6). If the wheel starts from rest, determine its angular velocity in t = 3 s.

10. Discuss equations of motion for rotational motion of a rigid body.

Hall T	Ficke	et Number :														
Code: 5GC24											-15					
Legineering Mathematics-II (Common to All Branches) Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)																
1.	1. Change the order of integration in $\int_{0}^{1} \frac{ \mathbf{r} ^{-1}}{\int_{0}^{2} - x} \frac{1}{x_{y}} \int_{0}^{2} \frac{1}{x_{y}} $												te the	14M		
2.	a)	Find the are								drant	of th	e elli	pse <u>x</u>	$\frac{2}{2} + \frac{y^2}{b^2} =$	· 1·	7M
		Evaluate ʃ	\int_0^{asin}	$\theta \int_{0}^{\frac{a^{2}}{2}}$		dz ar	- <i>d</i> 0.									7M
3.	a)	Evaluate \int_{0}^{∞} Find the Lap	° e⁻⁺	(<u>cos</u>	$\frac{dt}{t} - \cos \frac{1}{t}$	$(\underline{}_{\underline{t}})^{a}$	t.	UN								7M
	b)	Find the Lap	blace	tran	sforn	n ∫ _c	$\frac{e^t si^n}{r}$	$\frac{t}{dt}$		_						7M
		ΨL			storr			OR	2							
4.	a)	Find $L^{-1}\left\{\frac{\overline{c}^{s_2}}{\overline{c}^{s_2}}\right\}$	$\frac{s^2}{+a^2)(s}$	2+b2)	} ьу	conv	oluti	on th	eore	m.						7M
	b)	Find $\sum_{L=1}^{L-1} \{ \frac{C^{52}}{2^{-1}} \}$	$+a^{+a^{+}}$; $a^{+a^{+}}$; a^{+} ; a	2+b												7M
5.		P (' [†]	40	20	s 2	no		UNIT lace		form	aive	n th	ət			
0.		$\operatorname{Solv}^{e} \left(\int_{D^{-\frac{n}{2}}}^{1+\frac{n}{2}} + x(0) \right) = 1, x \left(\int_{D^{-\frac{n}{2}}}^{1+\frac{n}{2}} + x(0) \right)$				iau	Lap				give					14M
C		• 1, x	- ر₅		0			OR			1					4 4 5 4
6.		Solve														14M
7.	a)	Find a unit v											oint (·	-1, -1, 2	2).	7M
	b)	If A and B a	re irr	otati	onal,	prov	e tha			is sol	lenoi	dal.				7M
8.		Evaluate the formed by the	e line ne lin	e int _{te} ies <i>y</i>	ہوت = <u>+</u>	$\int_{c(x)}$	y + x dx	OR OF $^{2})dx$ $\pm 1.$ UNI	д В + _{(х}	اد م 2 + 2 + 2	²) ~ງ _d y	dal. 7, who) C ∍r∢	is the s	quare	14M
9.		Verify Gree bounded by	en's the i	theoi regio	rer	r fo ^r ا = 0, ع	$\int_{c} \left[C \right]_{x}^{2}$	$c^2 - 1$ and OR		$\int_{dx} + y = 1$	(4y -	5 - (23	v)dy],	re whe	C is	14M
10.		Verify Stoke bounded by	e's th the l	eore lines	n foi $x =$	0 $f = \frac{f}{+} a,$	(x^2) y =	* OF + y ² ; o, y = ***	₹) ī — = b.	= 1 $2_{xy\bar{J}}$	tak	en ar	ound	the rect	angle	14M

Hall ⁻	Ticke	et Number :												1
Code: 5GC23			·,		<u>.</u>								R-15	
	IB.	Tech. II Sen	nestei							tion	s Mo	uL/yc	ne 2019	
			,		-		-	hysi			,			
Max	Mc	nrks·70	(Comm	non fo	D CE	:, ME	:, CSE	: an	dII)		Time: 3 Hours	
Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)														
						****		_						
1.	a)	Explain the	proces	ss of in	duced		I T–I sorptio	 on. sr	oonta	aneo	us e	missio	n and stimulated	
	 a) Explain the process of induced absorption, spontaneous emission and stimula emission. Obtain an expression for energy density of radiation under equilibr conditions in terms of Einstein A & B Coefficients. 												8M	
	b)	In a Newton's rings experiment the diameter of the 15 ring was found to be 0.59cm and that of the 5th ring is 0.336 cm. If the radius of curvature of the lens is100 cm,												
				•		cm.	If the	e radi	us o	f cur	vatui	e of th	e lens is100 cm,	6M
			find the wave length of the light. OR											
2.	a)	Explain the c	onstru	ction ar	nd wor	king		micon	duct	tor la	ser			7M
	b)	•				•						otain a	n expression for	
	,	numerical ap	•	•		•							·	7M
							T–II							
3.	a)	What are Miller Indices? Obtain an expression for inter planar spacing in terms of Miller indices											8M	
	b)	Describe in outraso		now a fla	aw in	solid		erial is	s det	ecte	d by	non de	estructive method	6M
4	c)	Define Deeki	na foot	har Cale		سمط	OR		40 m 0	4 0 0	C an			014
4.	a) b)	Define Packi Draw the foll	•			-		-					2)	8M 6M
	6)		owing	planesi			T–III		· · <i>)</i> ,	(10	2) ai	10 (1 5	<i>∠)</i>	OW
5.	a)	State Heise electrons car	•				•			n the	e pri	nciple,	prove that free	7M
	b)	Mention the electron the		•							-		on classical free netal.	7M
		• • •					OR							
6.	a)	•	solutio	n of a p	particle	e in o	one d	dimens			•		one dimension, of infinite height.	10M
	b)	Find the ten	nperatu	ure at v	hich ·	there	e is 1	l% pro	obat	oility	that	a state	e with an energy	
		0.5eV above	Fermi	energy	is occ	upie	d.							4M
7	-)		- ((10				T–IV				<i></i>			014
7.	a) b)	What is Hall Discuss Mag				-		for the	e Hai	II COE	TICIE	nts.		8M 6M
	6)	Discuss mag		CINCICS			OR							0101
8.	a)	What is Meis	sner e	ffect? D	iscuss	s type	e I an	nd type	e II s	uper	cond	uctor v	vith examples.	7M
	b)	Discuss how superconduc	•	er pairs	s are t	form	ed? V	Nhat	is th	ie im	porta	ance of	Cooper pairs in	7M
-							T–V			-	-			
9.	a) b)		•						-				nagnetic material	7M
	b)	Explain the s	ynines	as of na	noma	terial	s usii OR	ng che	SUIIC	ai Va	pour	uepos	IUON.	7M
10.	a)	What are H			-		c ma			•	are	them	on the basis of	8M
	b)	What are nai	no mat	erials?	Explai	n the	struc	cture a	and	prop	erties	s of car	bon nonotubes.	6M

Т