Code: 5GC24

| B.Tech. || Semester Supplementary Examinations February 2022

Engineering Mathematics-II

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find the area of a plate in the form of a quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
b) Evaluate $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\sin }{} \frac{a^{2}-r^{2}}{a}} \int_{0}^{a} r d z d r d \theta$

OR
2. Change the order of integration in $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$ and hence evaluate it.

UNIT-II

3. a) Find the Laplace Transform of $\left(\sqrt{t}-\frac{1}{\sqrt{t}}\right)^{3}$
b) Evaluate $\int_{0}^{\infty} e^{-t}\left(\frac{\cos a t-\cos b t}{t}\right) d t$

OR

4. a) Find $L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}$ by convolution theorem.
b) Find $L^{-1}\left\{\log \left(\frac{s+1}{s-1}\right)\right\}$.

UNIT-III

5. Solve $\left(D^{2}+9\right) x=\sin t$ using Laplace transform given that $x(0)=1, x\left(\frac{\pi}{2}\right)=1$.

OR
6. Solve $y^{\prime \prime}-3 y^{\prime}+2 y=4 t+e^{3 t}, y(0)=1, y^{\prime}(0)=1$.

UNIT-IV

7. a) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$
b) Find the directional derivative of $f(x, y, z)=x y^{3}+y z^{3}$ at the point $(2,-1,1)$ in the direction of the vector $\mathrm{I}+2 \mathrm{~J}+2 \mathrm{~K}$.

OR

8. Evaluate the line integral $\int_{c}\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y$, where c is the square formed by the lines $y= \pm 1$ and $x= \pm 1$.

UNIT-V

9. Verify Green's theorem for $\int_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$, where c is the boundary of the region bounded by $\mathrm{x}=0, \mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=1$.

OR
10. Verify Stoke's theorem for $\bar{f}=(2 x-y) \bar{i}-y z^{2} \bar{j}-y^{2} z \bar{k}$ over the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ bounded by the projection of the xy-plane.
\square

Code: 5GC23

| B.Tech. || Semester Supplementary Examinations February 2022

Engineering Physics

(Common to CE, ME and CSE)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Describe construction of optical fiber
b) Write the application of optical fiber in communication system

OR

2. a) Illustrate the procedure for finding Acceptance Angle and Numerical Aperture of Optical
fiber
b) Distinguish Interference and Diffraction of light

UNIT-II

3. a) Show that FCC is closely packed than SC and BCC structures
b) Draw the plane of miller indices of (111) and (121)

OR

4. a) Define ultrasonics and write its properties
b) Describe the production of ultrasonics by Inverse Peizo electric effect
UNIT-III
5. a) Explain postulates of free electron model
b) How the solids are classified on the basis of energy band theory

OR

6. a) Define conductivity and drive its equation for metals
b) Distinguish metals, semiconductors and insulators

UNIT-IV

7. a) Explain Hall effect and write its applications 10M
b) What is photo diode explain it 4M

OR
8. a) Explain the diamagnetic nature of superconductors by Meissner's effect 8 M
b) Mention the applications of superconductors 6M

UNIT-V

9. a) Explain Hysterisis loop of ferromagnet6M
b) Derive magnetic moment of magnetic material through origin 8 M

OR

10. a) Narrate the importance of nano materials by basic principles
b) justify the importance of chemical vapour deposition technique by the synthesis of nano materials

Code: 5GC25

| B.Tech. || Semester Supplementary Examinations February 2022

Mathematical Methods-II

(Common to CSE \& IT)
Time: 3 Hours
Max. Marks: 70

UNIT-I

1. a) Fit a straight line for the following data

x	1	2	3	4	5	6
y	6	4	3	5	4	2

b) For the following data, fit a Parabola $y=a+b x+c x^{2}$.

x	2	3	6	8	10
y	3.07	12.85	31.47	57.38	91.29

OR

2. a) Fit a straight line for the following data

x	1	2	3	4	5	6
y	6	4	3	5	4	2

b) Fit a second degree polynomial to the following data by the method of least squares

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

3. a) Using Taylor's series method, compute the value of y at $x=0.2$ from $\frac{d y}{d x}=x+y ; y(0)=1$.
b) Given $y^{\prime}=x+\sin y, y(0)=1$. Compute $y(0.2)$ with $\mathrm{h}=0.2$ using Euler's Modified method.

OR

4. a) Using Picard's method, find the value of y for $x=0.4$, given that $y^{\prime}=x^{2}+y^{2} y(0)=0$.
b) Compute $y(0.1)$ and $y(0.2)$, if $y(x)$ is the solution of initial value problem $y^{\prime}=y^{2}+x y, y(0)=1$ by Runge-Kutta method

UNIT-III

5. a) Obtain the Fourier Series for $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in $(0,2 \pi)$
b) Express $f(x)=x$ as half range sine series in $0<x<2$

OR

6. a) Find the Fourier series for the function $f(x)=x$ in $(-1,1)$
b) Express $f(x)=a x+b$ as half range sine series in $0<x<1$ 7M

UNIT-IV

7. Find the Fourier sine and cosine transforms of $f(x)=2 e^{-5 x}+5 e^{-2 x}$

OR

8. Find the Finite Fourier sine and cosine transforms of $f(x)=x^{2}, 0<x<l$

UNIT-V

9. a) Form a partial differential equation by eliminating the arbitrary function f from $z=f\left(x^{2}+y^{2}\right)$
b) Solve $p \tan x+q \tan y=\tan z$.

OR
10. a) Form a partial differential equation by eliminating the arbitrary functions from $z=f(x+a t)+g(x-a t)$.
b) Solve $2 \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial u}{\partial y}=0$ using the method of separation of variables

Code: 5G121

| B.Tech. || Semester Supplementary Examinations February 2022

C Programming and Data Structures

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Using pointers write a C program which finds the maximum among the list of elements.
b) Write a C program to swap two numbers using pointers. 4M

OR
2. a) What is a pointer? What are the features of pointers? Write a C program to print address of a variable
b) Explain dynamic memory allocation functions in C in detail.

UNIT-II

3. a) Write a C Program to sort the given array in descending order using Bubble Sort.
b) Write a C program to find the given element using linear searching.

OR

4. a) Define Structures. Explain with an example how structure members are initialized and $\quad 7 \mathrm{M}$
accessed
b) Write a C program to copy the contents from one file to another file.

UNIT-III

5. What is a stack? How it can be represented in "C" using arrays? 14 M OR
6. a) What is Data Structure? Explain in detail about different type of data structures.
b) Write the steps for evaluating postfix expression

UNIT-IV

7. What is a Doubly Linked List.? Explain different operations of a Doubly linked list with suitable examples.

OR

8. Write a C program to implement the following operations on a singly Linked List
i) Insert at beginning
ii) deletion at end
iii)Traversing a List

UNIT-V

9. a) Define and describe the terms: Tree, Binary Tree, Complete Binary Tree and Degree of a tree.
b) Draw a complete undirected graph having five nodes.
10. Construct Binary search tree for the following elements: $67,12,45,98,80,73,7,120,85$, 30, 42 then Delete 73, 67, 12, 98.
