Hall Ticket Number :								
Code: 5G121	 	 		1	1	1	R-15	_

I B.Tech. II Semester Supplementary Examinations August 2021

C Programming and Data Structures

(Common to All Branches)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT–I	

- 1. a) What is the use of command line arguments
 - b) Write a program using pointers to compute the sum of all elements stored in an array.

OR

- 2. a) How pointers permit inter function communication.
 - b) How do you simulate arrays using pointers? Illustrate.

UNIT–II

- 3. a) How to copy and compare structure variables? Illustrate with example.
 - b) Write and Explain syntax of the following functions: (i) fopen() (ii) fclose() (iii) fread() (iv) fwrite() (v) rewind() (vi)fprintf() (vii) fscanf() (viii) feof().

OR

- 4. a) Explain the following:i. Nested structures ii. Array of structures
 - b) Define union. List out the differences between unions and structures

UNIT-III

- 5. a) What is Data Structure? Explain in detail about different type of data structures.
 - b) Write the steps for evaluating postfix expression

OR

6. Show the stack after each operation of the following sequence that starts with the empty stack: push(a), push(b), pop, push(c), push(d), pop.

UNIT–IV

7. What is a Singly Linked List.? Explain different operations of a singly linked list with suitable examples.

OR

8. Write a C function to insert and delete a node from the front end in case of doubly linked list.

UNIT-V

9. Define and describe the terms: Tree, Binary Tree, Complete Binary Tree and Degree of a tree.

OR

10. Define Graph and describe various representations of a graph with suitable examples.

 Code: 5G523	
I B.Tech. II Semester Supplementary Examinations August 2021	_
Engineering Drawing-II	
(Common to EEE, ECE, CSE & IT)	
Max. Marks: 70 Time: 3 Hou	٦r
Answer any five full questions by choosing one question from each unit ($5x14 = 70$ Mark	
******	-
UNIT–I	
The top view of a plane object is a regular hexagon of side 40mm, with a central hole of 30mm	
diameter and with two sides of the hexagon is parallel to XY, when the surface of the object is inclined at 45 [°] to H.P. Draw the true shape of the object.	
OR	
A thin rectangular plate of sides of 60mm×30mm has its shortest side in the VP and inclined at	
30° to the HP. Project its top view if its front view is a square of 30mm long sides.	
UNIT–II	
Draw the projections of a hexagonal pyramid with side of base 30mm and axis 65mm long,	
which is resting with a slant face on H.P such that its axis is parallel to V.P.	
OR Draw the projections of a guinder of base 20mm diameter and axis 50mm long, when it is	
Draw the projections of a cylinder of base 30mm diameter and axis 50mm long, when it is resting on HP on its base.	
UNIT-III	
Draw an isometric projection of	
i) a square plane of side 40mm	
ii)a rectangular plane 60mm x 80mm	
Both in the horizontal and the vertical plane	
OR A guinder of base 20mm diameter and avia 10mm long which lies on U.D. on a point of its rim	
A cylinder of base 30mm diameter and axis 40mm long which lies on H.P on a point of its rim, with its axis inclined at 30 ^o to H.P. Draw the projections of the cylinder when its top view of the	
axis is perpendicular to V.P.	
UNIT-IV	
Draw the isometric view of a square prism with side of base 40mm and length of axis	
70mm, when its axis is (i) vertical and (ii) horizontal.	
Draw the isometric view of a cone of base 40mm and length of axis 70mm, when its axis is (i) vertical and (ii) horizontal.	
UNIT-V	
The Figure shows a machine block. Draw its (i) Front view (ii) Top view (iii) Side view. Assume	
all the dimensions are in 'mm '.	
15 15	
* TA	
R T L L	
the states	

14M

OR

(a)

Draw the orthographic view of the following figure 10.

14M

	Hall Ticket Number :											
	Code: 5GC24											
	I B.Tech. II Semester Supplementary Examinations August 2021											
	Engineering Mathematics-II (Common to All Branches)											
	Max. Marks: 70 Time: 3 Hours											
	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)											

	UNIT-I											
1.	Evaluate the integral by changing the order of integration $\int_{a}^{a^{2a-x}} \int_{a}^{a^{2a-x}} x y^2 dy dx$											
	Evaluate the integral by changing the order of integration $\int_{0}^{0} \int_{\frac{x^2}{a}}^{x} x y^2 dy dx$											
	OR											
2.	Evaluate the double integral $\iint_{R} \sqrt{x^2 + y^2} dx dy$ by changing into polar coordinates, where 'R' is											
	the region in the xy plane bounded by the circles $x^2 + y^2 = 4$											
	UNIT–II											
0	Find the Laplace Transform of $\int_{0}^{t} \frac{e^{-t} \sin t}{t} dt$											
3.	Find the Laplace Transform of $\int_{0}^{t} \frac{du}{t}$											
	OR											
4.	Find $L^{-1}\left\{\frac{1}{(s-1)(s+3)}\right\}$											
4.	Find L $\left((s-1)(s+3) \right)$											
	UNIT–III											
5.	Solve $y'' + 2y' - 3y = \sin t$, $y(0) = 0$, $y'(0) = 0$ Using Laplace Transform											
	OR											
6.	Solve the differential equation $\frac{d^2x}{dt^2} - 4\frac{dx}{dt} - 12x = e^{3t}$ given that $x(0) = 1, x'(0) = -2$ using											
	Laplace Transform											
	UNIT–IV											
7.	Show that $\nabla^2 \left(\frac{1}{r} \right) = 0$											
0	OR											
8.	Evaluate the line integral of $\int_{c} (xy + y^2) dx + x^2 dy$ where 'c' is the square formed by the											
	lines $y = \pm 1$ and $x = \pm 1$											
	UNIT-V											
9.	Evaluate by stoke's theorem for a vector field $\overline{F} = (2x - y)\overline{i} - yz^2 \overline{j} - y^2 z\overline{k}$ over the upper											
	half surface of $x^2 + y^2 + z^2 = 1$ bounded by projection on xy-plane.											
	OR											
10.	Verify Green's Theorem in the plane for $\int_{c} \left[(3x^2 - 8y^2) dx + (4y - 6xy) dy \right]$ where 'c' encloses											
	the region bounded by $y = \sqrt{x}$ and $y = x^2$											

		Hall Ticket Number :	R-15
	C	Code: 5GC23	
		I B.Tech. II Semester Supplementary Examinations Aug	gust 2021
		Engineering Physiscs (Common to CE , ME, CSE & IT)	
	Ν	Max. Marks: 70	Time: 3 Hour
	/	Answer any five full questions by choosing one question from each unit	(5x14 = 70 Marks)

		UNIT–I	
	a)	Discuss the working of He-Ne laser	
	b)	Summarize the applications of LASER	
	``	OR Differentiete Sten Index and One ded Index entired filtere	
	a) Þ	Differentiate Step-Index and Graded-Index optical fibers	
	b)	Brief the working principle of optical fiber	
		UNIT–II	
5.	a)	Differentiate SC with BCC	
-	b)	Discuss the rules to find Miller Indices and find Miller Indices of a plane (2a,	3b,2c)
	- /	OR	. ,
•	a)	Explain production and detection of ultrasonics in detail	
	b)	Formulate applications of Ultrasonics	
	2)	UNIT-III Derive Schredinger's time independent wave equation	
	a) b)	Derive Schrodinger's time independent wave equation Brief the physical importance of Schrodinger's equation	
	D)	OR	
j.		Analyze motion of electron in periodic potential of metal	
		UNIT–IV	
-	a)	Differentiate intrinsic and extrinsic semiconductors	
	b)	Explain direct and indirect band gap semiconductors	
5.	a)	OR State and explain Hall effect	
•	b)	Brief Joshepson's effect with types	
	,		
		UNIT–V	
	a)	Differentiate any three of dia , para , ferro, antiferro and ferrite	
	b)	classify soft and hard magnetic materials	
		OR	
).	a)	Justify magnetic moment by the origin of materials	
	b)	classify the ferromagnetics by hysteresis property	

Hall Ticket Number :						
						R-15

Code: 5GC25

I B.Tech. II Semester Supplementary Examinations August 2021

Mathematical Methods-II

(Common to CSE & IT)

Max. Marks: 70

Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT–I

1. By the method of least squares, fit a parabola of the form $y=a+bx+cx^2$ for the following data.

Х	1	2	3	4	5	6	7			
Υ	2.3	5.2	9.7	16.5	29.4	35.5	54.4			

OR

2. By the method of least squares, find the straight line that best fits the following data.

Х	1	2	3	4	5
У	14	27	40	55	68

UNIT–II

3. Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with initial condition y = 1 at x = 0. Find y for x = 0.1 by Picard's method.

OR

4. Using Modified Euler's method find an appropriate value of y when x = 0.1 and x = 0.2, given that $\frac{dy}{dx} = x - y$ and y = 1 when x = 0.

UNIT-III

- 5. a) Obtain the Fourier series for $f(x) = x^2$ in the interval -f < x < f
 - b) Find the half range cosine series for the function f(x) = x, when 0 < x < f

OR

6. Find the half range cosine series for f(x) = x(2-x) in $0 \le x \le 2$ and hence prove that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \dots = \frac{f^2}{12}$

UNIT-IV

OR

- 7. Find the Fourier cosine transform of $f(x) = \frac{1}{a^2 + x^2}$, and Fourier sine transform of $f(x) = \frac{x}{a^2 + x^2}$
- 8. Derive the Fourier transform of $f(x) = \begin{cases} x, & |x| \le a \\ 0, & |x| > a \end{cases}$

UNIT-V

9. Obtain the solution of PDE $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$

10. Eliminate the arbitrary function *f* from z = x - y + f(x, y)