		R-15
Coc	Le: 5GC23 I B.Tech. II Semester Supplementary Examinations Decemb	
	Engineering Physics	
	(Common to CE, ME, CSE & IT)	
-	x. Marks: 70 wer any five full questions by choosing one question from each unit (5×	Time: 3 Hours (14 = 70 Marks)
		Ма
1.a)	Derive the expression for Diameter of Newton's Ring	8
b)	Explain the Diffraction greeting spectrum.	6
	OR	-
2. a)	Explain the production of Laser rays by ruby laser method	7
b)	Explain optical communication system.	7
	UNIT–II	
3.	Define miller indices and write conditions for finding miller indices	6
	Derive packing fraction of S.C and B.C.C	8
	OR	
4. a)	Deduce Bragg's law equation	ç
b)	What is ultrasonic and write properties	Ę
	UNIT–III	
5. a)	State de-Broglie hypothesis of dual nature and derive its wavelength	1(
b)	Write the sources of electrical resistance	2
,	OR	
6.	Analyze the particle in one dimensional box	14
	UNIT-IV	
7. a)	Define and explain drift and diffusion currents in semiconductors	8
b)	what is LED brief it	e
	OR	
3. a)	Differentiate any three of dia, para, ferro, antiferro and ferrite	1(
b)	classify soft and hard magnetic materials	2
	UNIT–V	
9. a)	Explain the production of nano materials by ball milling method	1(
b)	What is CNT and explain it	2
	OR	
). a)	Brief BCS theory and Flux quantization	8
b)	Justify the diamagnetic nature of superconductors	6
•	***	

F	fall Ticket Number :	
	R-15	
C	ode: 5GC25 I B.Tech. II Semester Supplementary Examinations December 2022	
	Mathematical Methods-II	
	(Common to CSE & IT)	
	Max. Marks: 70 Time: 3 Hours	
A	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
	UNIT-I	
1.	Find the parabola of the form $a + bx + cx^2$ which fits most closely with the observations	
	x -3 -2 -1 0 1 2 3	
	y 4.63 2.11 0.67 0.09 0.63 2.15 4.58	14M
2.	OR Fit a parabola to the following data points in the table:	
Ζ.	Fit a parabola to the following data points in the table: x 0 1 2 3 4	
	y 1 1.8 1.3 2.5 6.3	14M
	UNIT–II	
3.	Using Taylor series method, find an approximate value of y at $x=0.2$ for the	
	differential equation $y^{\text{H}} - 2y = 3e^x$, $y(0) = 0$.	14M
	OR	
4.	Use Runge-Kutta method to evaluate $y(0.1)$ and $y(0.2)$ given that $y^{4} = x + y$,	
	y(0) = 1.	14M
	UNIT–III	
5.	Define periodic function and find the Fourier expansion of	
0.	$f(x) = x - x^2, -1 < x < 1.$	14M
	OR	
6.	Expand $f(x) = \cos x$, $0 < x < \pi$ in half range sine series.	14M
		1 1101
	UNIT-IV	
7	$-\frac{x^2}{2}$	
7.	Find the Fourier transform of e^{-2} by finding the Fourier transform of	
	$e^{-a^2x^2}$ (a >0).	14M
	OR	
8.	Find the Fourier sine and cosine transform of e^{-ax} ($a > 0$) and deduce the inverse	
	formula.	14M
	UNIT–V	

9. Form the partial differential equation for $f(xy + z^2, x + y + z) = 0$ 14M

10. Solve by the method of separation of variables $2xz_x - 3yz_y = 0.$ 14M

	Hall	Ticket Number :	٦
Ċ	Code	e: 5G121 R-15	
		I B.Tech. II Semester Supplementary Examinations December 2022	
		C Programming and Data Structures	
		(Common to All Branches) . Marks: 70 Time: 3 Hours	
		Time: 3 Hours . ver any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********	
		UNIT–I	
1.	a)	Write a program to perform addition of array elements using pointer to array.	7M
	b)	Explain the declaration of pointers and pointer to pointer with examples.	7M
		OR	
2.	a)	Explain dynamic memory allocation functions in C in detail.	7M
	b)	What is the use of command line arguments	7M
		UNIT–II	
3.	a)	Write a program for sorting given numbers using selection sort technique	7M
	b)	Write an algorithm for Binary search? Validate it with suitable data set?	7M
		OR	
4.		Write a C program that defines a structure employee containing the details such as empno , empname , department name and salary . The structure has to store 20 employees in an organization. Use the appropriate method to define the above details and define a function that will display the contents?	14M
_			
5.		Write an algorithm to convert a given infix expression into prefix expression. OR	14M
6		Write a C Program to perform the following operations on a queue	
6.		a) Insert b) Delete	14M
		UNIT-IV	
7.		What is a Circular Linked List.? Explain different operations of a Circular linked list with suitable examples.	14M
		OR	
8.		What are different types of linked list? Write a C function to count number of elements present in single linked list.	14M
9.		UNIT-V State binary search tree property. And construct the binary search tree for the	
э.		following keys: G , K, L ,R, A, C, T, F, J, T, Y, E. OR	14M
10.		Define Graph and describe various representations of a graph with suitable examples. ***	14M

Hall Ticket Number :	E
Code: 5GC24 I B.Tech. II Semester Supplementary Examinations December 2022	
Engineering Mathematics-II	
(Common to All Branches) Max. Marks: 70 Time: 3	
Answer any five full questions by choosing one question from each unit (5x14 = 70 M *********	larks)
$\bigcup \text{UNIT-I}$	
Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates.	And
hence show that $\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{f}}{2}$	14
OR	14
f (a^2-r^2)	
a) Evaluate $\int_{0}^{\frac{f}{2}a\sin_{\#}} \int_{0}^{\frac{a^2-r^2}{a}} r dz dr d_{\#}$	
	7
b) Evaluate $\int_{0}^{5} \int_{0}^{x^2} x (x^2 + y^2) dy dx$	_
	7
a) Find the Laplace Transform of $t e^{-t} \sin t$	7
b) Find $L^{-1}\left\{\frac{s}{(s^2+1)(s^2+9)(s^2+25)}\right\}$	
	7
OR $\int e^{-t} \sin t$	
a) Find the Laplace Transform of $\int_{0}^{t} \frac{e^{-t} \sin t}{t} dt$	7
b) Write the Laplace Transforms of some standard functions UNIT-III	7
Solve the differential equation by Laplace Transform	
$(D^2+2D+5)y=e^{-t}\sin t, y(0)=0; y'(0)=-1$	14
OR Solve the differential equation $y'' + y - t = y(0) - 1 = y'(0) - 21$	leine
Solve the differential equation $y'' + y = t$, $y(0) = 1$, $y'(0) = 2$ L Laplace Transform	using 14
UNIT–IV	17
Using the line integral, calculate the work done by the force, $\overline{F} = (3x^2 - 6yz)\overline{i} + (2y + 3xz)\overline{j} + (1 - 4xyz^2)\overline{k}$ in moving a particle	from
the point (0,0,0) to the point (1,1,1) along the curve $C: x=t$, $y=t^2$, $z=t^2$	
the point $(0,0,0)$ to the point $(1,1,1)$ along the curve $C \cdot x - i$, $y - i$, $z - i$	$=l^{\circ}$. 14

a) Show the vector $(x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}$ is irrotational and 8. find its scalar potential. 7M b) Find the directional derivative of $2xy+z^2$ at the point (1,-1,3) in the direction of $\overline{i} + 2\overline{j} + 3\overline{k}$ 7M UNIT-V Verify 9. the theorem Stoke's for vector field а $\overline{F} = (2x - y)\overline{i} - yz^2 \,\overline{j} - y^2 \,z\,\overline{k}$ over the upper half surface of $x^2 + y^2 + z^2 = 1$ bounded by projection on xy-plane 14M OR Verify by Green's Theorem for $\int_{a} \left[\left(x y + y^2 \right) dx + x^2 dy \right]$ where 'c' is 10. bounded by y=x and $y=x^2$ 14M
