Hall T	Ficke	et Number :														
Code.	560	774										<u></u>		R	-15	
	Code: 5GC24 I B.Tech. II Semester Supplementary Examinations May 2019 Engineering Mathematics-II (Common to All Branches) Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********															
1.		Change the same.	orde	er of	integ	Iratio		UNI	T = 1 $\int_{c^{2}}^{-x} x$]), ay	dx a	and I	ence	evaluat	te the	14M
2.	a)	Find the are								drant	of th	e elli	pse <u>x</u>	$\frac{2}{2} + \frac{y^2}{b^2} =$	· 1·	7M
		Evaluate ʃ	\int_0^{asin}	$\theta \int_{0}^{\frac{a^{2}}{2}}$		dz ar	- <i>d</i> 0.									7M
3.	a)	Evaluate \int_{0}^{∞} Find the Lap	° e⁻⁺	(<u>cos</u>	$\frac{dt}{t} - \cos \frac{1}{t}$	$(\underline{}_{\underline{t}})^{a}$	t.	UN								7M
	b)	Find the Lap	blace	tran	sforn	n ∫ _c	$\frac{e^t si^n}{r}$	$\frac{t}{dt}$		_						7M
		ΨL			storr			OR	2							
4.	a)	Find $L^{-1}\left\{\frac{\overline{c}^{s_2}}{\overline{c}^{s_2}}\right\}$	$\frac{s^2}{+a^2)(s}$	(2+b ²)	} ьу	conv	oluti	on th	eore	m.						7M
	b)	Find $\sum_{L=1}^{L-1} \{ \frac{C^{52}}{2^{-1}} \}$	$+a^{+a^{+}}$; $a^{+a^{+}}$; a^{+} ; a	2+b												7M
5.		P (' [†]	40	20	s 2	no		UNIT lace		form	aive	n th	ət			
0.		$\operatorname{Solv}^{e} \left(\int_{D^{-\frac{n}{2}}}^{t^{+}} + x(0) \right) = 1, x \left(\int_{D^{-\frac{n}{2}}}^{t^{+}} \right)$				iau	Lap				give					14M
C		• 1, x	- ر₅		0			OR			1					4 4 5 4
6.		Solve														14M
7.	a)	Find a unit v											oint (·	-1, -1, 2	2).	7M
	b)	If A and B a	re irr	otati	onal,	prov	e tha			is sol	lenoi	dal.				7M
8.		Evaluate the formed by the	e line ne lin	e int _{te} ies <i>y</i>	ہوت = <u>+</u>	$\int_{c(x)}$	y + x dx	OR OF $^{2})dx$ $\pm 1.$ UNI	д В + _{(х}	اد م 2 + 2 + 5	າ 2) ກາງອີງ ກາງອີງ	dal. 7, who) C ∍r∢	is the s	quare	14M
9.		Verify Gree bounded by	en's the i	theoi regio	rer	r fo ^r ا = 0, ع	$\int_{c} \left[C \right]_{x}^{2}$	$c^2 - 1$ and OR		$\int_{dx} + y = 1$	(4y -	5 - (23	v)dy],	re whe	C is	14M
10.		Verify Stoke bounded by	e's th the l	eore lines	n foi $x =$	0 $f = \frac{f}{+} a,$	(x^2) y =	* OF + y ² ; o, y = ***	₹) ī — = b.	= 1 $2_{xy\bar{J}}$	tak	en ar	ound	the rect	angle	14M

Hall ⁻	Ticke	et Number :												1
Code	e: 5G	C23	·,										R-15	
	IB.	Tech. II Sen	nestei							tion	s Mo	uL/yc	ne 2019	
			,		-		-	hysi			,			
Max	Mc	arks: 70	(Comm	non fo	D CE	:, ME	:, CSE	: an	dII)		Time: 3 Hours	
		er all five uni	ts by c	choosin	g one	e que	estior	n from	n ea	ch u	nit (5 x 14		
						****		_						
1.	a)	Explain the	proces	ss of in	duced		I T–I sorptio	 on. sr	oonta	aneo	us e	missio	n and stimulated	
	α,	•	btain a	an expr	essior	n for	enei	rgy de	ensit				under equilibrium	8M
	b)		•	•							•		ind to be 0.59cm	
		and that of t find the wave		•		cm.	If the	e radi	us o	f cur	vatui	e of th	e lens is100 cm,	6M
			ellerigi		ngrit.		OR							OIVI
2.	a)	Explain the c	onstru	ction ar	nd wor	king		micon	duct	tor la	ser			7M
	b)	•				•						otain a	n expression for	
	,	numerical ap	•	•		•							·	7M
							T–II							
3.	a)	Miller indices	5				-				•	·	acing in terms of	8M
	b)	Describe in outraso		now a fla	aw in	solid		erial is	s det	ecte	d by	non de	estructive method	6M
4	c)	Define Deels	na foot	har Cale		سمط	OR		40 m 0	4 0 0	C an			014
4.	a) b)	Define Packi Draw the foll	•			-		-					2)	8M 6M
	6)		owing	planesi			T–III		· · <i>)</i> ,	(10	2) ai	10 (1 5	<i>∠)</i>	OW
5.	a)	State Heise electrons car	•				•			n the	e pri	nciple,	prove that free	7M
	b)	Mention the electron the		•							-		on classical free netal.	7M
		• • •					OR							
6.	a)	•	solutio	n of a p	particle	e in o	one d	dimens			•		one dimension, of infinite height.	10M
	b)	Find the ten	nperatu	ure at v	hich ·	there	e is 1	l% pro	obat	oility	that	a state	e with an energy	
		0.5eV above	Fermi	energy	is occ	upie	d.							4M
7	-)		- ((10				T–IV				<i></i>			014
7.	a) b)	What is Hall Discuss Mag				-		for the	e Hai	II COE	TICIE	nts.		8M 6M
	6)	Discuss mag		CINCICS			OR							0101
8.	a)	What is Meis	sner e	ffect? D	iscuss	s type	e I an	nd type	e II s	uper	cond	uctor v	vith examples.	7M
	b)	Discuss how superconduc	•	er pairs	s are t	form	ed? V	Nhat	is th	ie im	porta	ance of	Cooper pairs in	7M
-							T–V			-	-			
9.	a) b)		•						-				nagnetic material	7M
	b)	Explain the s	ynines	as of na	noma	terial	s usii OR	ng che	SUIIC	ai va	pour	uepos	IUON.	7M
10.	a)	What are H			-		c ma			•	are	them	on the basis of	8M
	b)	What are nai	no mat	erials?	Explai	n the	struc	cture a	and	prop	erties	s of car	bon nonotubes.	6M

Т

Ha	all Ti	cket Number :						
Co	de:	5GC25 R-15						
	I B.Tech. II Semester Supplementary Examinations May 2019 Mathematical Methods-II							
	(Common to CSE & IT)							
١	-	. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)						
		UNIT-I						
1.								
		X 0 1 2 3 4 Y 1 1.8 3.3 4.5 6.3						
	b)	Fit a parabola of the form $y=a+bx+cx^2$ for the following data.						
	,	X 10 15 20 25 30 35						
		Y 35.3 32.4 29.2 26.1 23.2 20.5						
2.	a)	OR Fit a straight line $y = ax + b$ for following data						
	,	X 1 2 3 4 5						
		Y 14 27 40 55 68						
	b)	By the method of least squares, fit a parabola of the form $y=a+bx+cx^2$ for the following data.						
		X 1 2 3 4 5 6 7						
		Y 2.3 5.2 9.7 16.5 29.4 35.5 54.4 UNIT-II						
3.	a)	Find the value of y at x = 1 if $\frac{dy}{dx} = 1 + xy$, and y(0)=1using Picard's method.						
0.	a)	Find the value of y at x = 1 if $\frac{dx}{dx} = 1 + xy$, and y(0)=rusing Picard's method.						
	b)	Using Taylor's series method, compute the value of y at x=1.1 from $\frac{dy}{dx} = x + y$; $y(1) = 0$.						
4.	a)	OR Using R-K method to evaluate $y(0.1)$ given that $y' = y^2 + x$, $y(0) = 1$						
	b)	Find the values of y at x = 0.1 from $\frac{dy}{dx} = x^2 - y$, y(0)=1 by Taylor's series method.						
5.	a)	UNIT-III Obtain the Fourier Series for $f(x) = x$ in (0,2)						
0.		Express $f(x) = x$ as half range sine series in $0 < x < 2$						
	,	OR						
6.	a)	Find the Fourier series to represent $f(x) = x $ when $-f < x < f$ and deduce that						
		$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$						
	b)	Obtain the Fourier cosine series for $f(x) = x \sin x, 0 < x < f$						
		UNIT-IV						
7.		Find Fourier cosine and sine transforms of e^{-ax} , a>0 and hence deduce their inversion formulae.						
		OR						
8.	a)	Find the Fourier transform of $f(x)$ given by $f(x) = \begin{cases} 1, & \text{for } x < 1 \\ 0, & \text{for } x > 1 \end{cases}$						
	b)	Find the Fourier cosine transform of $f(x) = e^{-ax} (x > 0, a > 0)$.						
		UNIT–V						
0	2)							

- 9. a) Eliminate the arbitrary function *f* from z = x y + f(x, y)
 - b) Obtain the solution of PDE $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$

OR

10. Solve $2z + p^2 + qy + 2y^2 = 0$ by using Charpits Method

На	пті	cket Number :	
		R-15	
Cod		G121 3.Tech. II Semester Supplementary Examinations May/June 2019	
		C Programming and Data Structures	
Ma	~ ~ ^ ^	(Common to All Branches) arks: 70 Time: 3 Ho	
		wer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	0015
		UNIT–I	
1.	a)	What is meant by a pointer? Write a program to swap the values of two variables using pointers.	7M
	b)	Write a program to show the usage of pointer to structure.	7M
		OR	
2.	a)	Demonstrate the use of &(address of) and *(value at address) operators	7M
	b)	Write a program to show a function returning pointer.	7M
3.		UNIT–II What is a structure? Explain the syntax of Structure declaration with example	7M
З.	a) b)	How Selection sort is different from bubble sort?	7M
	5)	OR	7 101
4.	a)	Define Union. Explain its general syntax with one example.	7M
	b)	Arrange the following integers in ascending order using Merge sort procedure.	
	,	39,48,62,18,23,34,58,12.	7M
		UNIT–III	
5.	a)	Explain stack with basic Operations (push and pop).	7M
	b)	Design the procedure to count number of parenthesis in an expression using Stack.	7M
		OR	
6.		Compare Linear Queue and Circular Queue. Write a program to insert and delete from a circular queue.	14M
		UNIT-IV	
7.		Implement Insertion, Deletion and search operations at any position in a singly	
		linked list.	14M
		OR	
8.	a)	Write insertion and deletion functions for the doubly linked list.	7M
	b)	Summarize Circular Linked List	7M
		UNIT–V	
9.	a)	Construct a Binary tree T by using the following in order and post order traversals of T. In order: DKIBAEGHJFC	
		Post Order: K D I E A G B F C J H.	7M
	b)	Explain various methods of representing graphs in memory.	7M
10.		What is Binary Search Tree (BST)? How do we do search in BST? Write a procedure for insertion and deletion operations on BST.	14M

	I Ticket Number :							
					R-15			
Code	le: 5G523 I B.Tech. II Semester Suppleme Engineer (Common to I	ing Drav	ving –II		June 2019			
Mc	Answer all five units by choosing one	question f			Time: 3 Hours 14 = 70 Marks)			
1.	UNIT-I Draw the projections of a regular pentagon of 30mm side with its surface is making an angle of 30 ^o with H.P. One of the sides of the pentagon is lying on the H.P and perpendicular to V.P.							
		OR						
2.	A regular hexagonal plane of 35mm side has a corner at 20mm from V.P and 50mm from H.P. Its surface is inclined at 45 ^o to V.P and perpendicular to H.P. Draw the projections of the plane.							
	U	NIT–II						
3.	Draw the projections of a cone its ba is lying on the H.P by one of its gene				•			
4.	base edge such that the edge is per when its axis is 45 [°] inclined to H.P.	A triangular prism of base 30mm side and axis 50mm long is resting on H.P on one of its base edge such that the edge is perpendicular to V.P. Draw the projections of the solid						
5.	A hexagonal prism of base 25mm si	UNIT-III A hexagonal prism of base 25mm side and axis 45mm long is positioned with one of its base edges on H.P such that the axis is inclined at 30 ^o to H.P and 45 ^o to V.P. Draw the projections of the prism.						
6.	A cone of base diameter 50mm and a	OR altitude 60n	om is lvind	i on one of	its generators on the			
0.	H.P and its axis makes an angle of 30				its generators on the			
		NIT–IV						
7.	Draw the isometric view of a cylinder a axis is perpendicular to H.P.		meter 30n	nm and heig	ght is 70mm, when its			
8.	Draw the isometric view of a pentago when its axis is perpendicular to H.P.		d of base	side 30mm	and height is 75mm,			
9.	U The Figure shows a machine compon Assume all the dimensions are in 'mm		ts (i) Front	view (ii) To	op view (iii) Side view.			
			2xR10]				

OR

10. The Figure shows an object. Draw its (i) Front view (ii) Top view (iii) Side view. Assume all the dimensions are in 'mm '.