	Ha	II Ticket Number :													
	Cor	de: 5G121													R-15
		I B.Tech. II Se	me	ster	Sup	pler	nen	tary	Exc	ımin	atic	ons (Dctol	ber 2	2020
	C Programming and Data Structures														
	(Common to All Branches) Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********														
	UNIT-I														
1.	a)	What is a pointer? I	-				-								
	b)	Write a program to	read	and	displa	ay ar	ray e O		nts u	sing	point	ers			
2.	a)	What is the use of c	comm	nand	line a	argun									
	b)	Write a program us	ing p	ointe	rs to	comp	oute	the su	um of	[:] all e	leme	ents i	n an ai	rray.	
3.	a)	Define Structures. accessed	Expl	ain v	with		NIT-l xamp		ow s	struct	ure r	nem	bers a	are in	itialized and
	b)	Explain different mo	odes	to op	en a	file									
							0	R							
4.	a) b)	Write a C Program Write a C program			-		-			-		-	Bubbl	e Sor	t.
5.		What is a stack? He	ow it (can t	be rej	_	NIT–I ented O	in "C	" usii	ng ar	rays	?			
6.	a)	What is Data Struct	ure?	Expl	ain ir	n deta	ail ab	out d	iffere	nt typ	be of	data	struct	ures.	
	b)	Write the steps for	evalu	ating	post	fix ex	kpres	sion							
7.		What is a Singly Lir examples.	nked	List.	? Exp	l	NIT-I differ O	ent o	perat	ions	of a	singl	y linke	d list	with suitable
8.		What is a Circular suitable examples.	Link	ed L	ist.?	Expl			nt op	perat	ions	of a	Circul	lar lin	ked list with
9.		Define binary searc	ch tre	e. Ex	plain		NIT- exar		inser	tion d	of an	elen	nent in	the b	binary search
10.	a) b)	Define the following Define and write ap				-			d gra	ıph ii)) In d	egre	e iii) D	igrapl	h

Code: 5G523

I B.Tech. II Semester Supplementary Examinations October 2020

Engineering Drawing-II

(Common to EEE, ECE, CSE & IT)

Max. Marks: 70

Time: 3 Hours

R-15

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

1. A square ABCD of 40mm side has a corner on the HP and 20mm in front of the VP. All the sides of the squares are equally inclined to the HP and parallel to the VP. Draw its projections.

OR

2. A thin rectangular plate of sides of 60mm×30mm has its shortest side in the VP and inclined at 30^o to the HP. Project its top view if its front view is a square of 30mm long sides.

UNIT–II

3. Draw the projections of a cylinder of base 30mm diameter and axis 50mm long, when it is resting on HP on its base.

OR

4. A pentagonal prism is resting on one of the corners of its base on the HP. The longer edge containing that corner is inclined at 45° to the base. The axis of the prism makes an angle of 30° to the V.P. Draw the projections of the solid.

UNIT-III

5. A hexagonal pyramid with side of base 30mm and axis 120mm long, is resting on its base on H.P. An edge of the base is parallel to VP.A horizontal section plane passing through a point on the axis, at a distance of 60mm from the base. Draw the isometric projection of the frustum of the pyramid.

OR

6. A cylinder of base diameter 50mm and axis height 65mm is resting on HP on one of its generators with its axis inclined at 50° to VP. Draw its projections.

UNIT–IV

7. Draw the Isometric view of the following figure

Draw the Isometric view of the following figure 8.

9.

Draw the orthographic view of the following figure 10.

	На	Il Ticket Number :									
		R-15									
Code: 5GC24 I B.Tech. II Semester Supplementary Examinations October 2020 Engineering Mathematics-II (Common to All Branches) Max. Marks: 70 Time: 3 Hours											
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********* UNIT-I									
1.	a)	Evaluate $\int_{0}^{5} \int_{0}^{x^{2}} x \left(x^{2} + y^{2}\right) dy dx$ $\int_{1}^{1} \sqrt{1 - x^{2}} \sqrt{1 - x^{2} - y^{2}}$	7M								
	b)	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z dx dy dz$	7M								
2.		Evaluate the integral by changing the order of integration $\int_{0}^{a} \int_{x^{2}}^{2a-x} x y^{2} dy dx$									
		$\begin{array}{c} 0 & \frac{x^2}{a} \\ \hline \mathbf{UNIT}-\mathbf{II} \end{array}$	14M								
3.		Find the Laplace Transform of i) $\cos 2t$ ii) $\sin 2t \sin 3t$	14M								
4.	a)	OR Write the Laplace Transforms of some standard functions (2, 0 < t < 1)	7M								
	b)	Find the Laplace Transform of $f(t) = \begin{cases} 2, 0 \le t \le 1 \\ 2t, t \ge 1 \end{cases}$	7M								
5.		Solve $y'' + 2y' - 3y = \sin t$, $y(0) = \overline{0}$, $y'(0) = 0$ Using Laplace Transform	14M								
		OR									
6.		Solve $y'' + 2y' + 5y = e^{-t}$, $y(0) = 0$, $y'(0) = 1$ Using Laplace Transform Technique	14M								
7.	a)	UNIT-IV Find $div \overline{F}$ and $curl \overline{F}$ where $\overline{F} = grad(x^3 + y^3 + z^3 - 3xyz)$									
7.			7M								
	0)	Show that $div(grad r^n) = n(n+1)r^{n-2}$ OR	7M								
8.	a)	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$	7M								
	b)	Prove that $\nabla r^n = n r^{n-2} \overline{r}$ where $\overline{r} = x \overline{i} + y \overline{j} + z \overline{k}$ and $r = \overline{r} $	7M								
		UNIT-V									
9.		Evaluate by stoke's theorem for a vector field $\overline{F} = (2x - y)\overline{i} - yz^2\overline{j} - y^2z\overline{k}$ over the upper									
		half surface of $x^2 + y^2 + z^2 = 1$ bounded by projection on xy-plane.	14M								
10.	OR 10 Verify by Cause Divergence the event for $\overline{E} = x^3 \overline{z} + x^3 \overline{z} + z^3 \overline{L}$ taken even the owned of										
10.		Verify by Gauss Divergence theorem for $\overline{F} = x^3\overline{i} + y^3\overline{j} + z^3\overline{k}$ taken over the cube bounded									

by x=0, x=a; y=0, y=a; z=0, z=a

14M

_			1			1 1					
	Hall	Ticket Number :									[]
(Cod	e: 5GC23					i				R-15
		I B.Tech. II Se	mester	Suppl	emen	tary	Exan	nina	tions	octo	ober 2020
				•	neeri	-	-				
	-	x. Marks: 70 Answer all five unit		comma cosing a	one qu	estion			-	t (5 x 1	Time: 3 Hours 14 = 70 Marks)
1.	a)	Explain about vario	ous types	of optic							
	с, b)	Discuss the princip	••	•			tina la	aser.			
	- /			5		R	5				
2.		Answer any two of a. Fraunhof b. Einstein's c. Acceptar	er diffract s coefficie	tion. ents.	UNIT	-11					
3.		Describe with suita	able diagr	am the			od for	dete	rmina	tion of (crvstal structure.
-	 Describe with suitable diagram the powder method for determination of crystal structure. OR 										
4.		Distinguish betwee	en schottl	ky and F	resnel	defect	s in io	nic c	rystal	S.	
				_							
					UNIT-	-111					
5.	a)	What is conductivity	-	-							
	b)	Write a note on sources of electrical resistance of metal									
•	,				-	R					
6.	a) h)	Distinguish betwee					-				
	b)	Describe draw bac free electron mode		assical 1	ree ele	ctron	model	and	write	postul	ates of quantum
					UNIT-	-IV					
7.	a)	Explain the constru			•	•	hitting	diode	e (LEI	D).	
	b)	Discuss advantage	es and ap	plicatio							
	,				0	R					
8.	a)	What is Bohr mag								<i></i>	and of the
	b)	With suitable expre materials.	essions e	xpiain t	ne origi	n of pe	erman	ent n	nagne	etic mor	nent of magnetic
						-V					

- UNIT-V
- 9. a) Distinguish the soft and hard magnetic materials.
 - b) A magnetic material has a magnetization of 3300 A/m and flux density of 0.0044Wb/m². Compute the magnetizing force and the relative permeability of the material.

OR

- 10. a) Explain the construction and working of Ball mill method to prepare nanoparticles.
 - b) Write the properties of nanomaterials

	На	II Ticket Number :										
l	Cor	de: 5GC25										
	Code: 5GC25 I B.Tech. II Semester Supplementary Examinations October 2020											
	Mathematical Methods-II											
	(Common to CSE & IT) Max. Marks: 70 Time: 3 Hours											
	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)											
	UNIT–I											
1.	a)	Fit a straight line for the following data										
		X 6 7 7 8 8 9 9 10 Y 5 5 4 5 4 3 4 3 3	7M									
	b)	Fit a curve of the form $y = ae^{bx}$ to the following data.										
		X 6 7 7 8 8 8										
		Y 5 5 4 5 4 3	7M									
2.		OR Fit a Second degree curve to the following data										
		X 1 2 3 4 5 6										
			14M									
3.	a)	UNIT–II Solve the following using Taylor series method $y^1 = y + x$, $y(0) = 1$, find $y(0.1)$ and $y(0.2)$.	7M									
0.	b)		7 101									
	b) Solve the following using Picard's method $y^1 = \frac{y-x}{y+x}$, $y(0) = 1$, find $y(0.1)$ and $y(0.2)$ 7M											
		OR										
4.		Use Milne's method to find y (0.8) and y(1.0) from $y^1 = 1 + y^2$, y(0)=0. Find the initial values	4 4 5 4									
		y(0.2), y(0.4) and y(0.6) from Runge-Kutta fourth method UNIT-III	14M									
5.		Find a Fourier series to represent $x - x^2$ from $x = -\pi$ to $x = \pi$ and hence deduce that										
		$\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \dots = \frac{f^2}{2}$										
		$1^2 2^2 3^2 4^2 12$ 14M OR										
6.		Find the half range cosine series for the function $f(x) = (x-1)^2$ in the interval										
		_										
		$0 < x < 1$. Hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$.										
7	-)	UNIT-IV Find the Fourier sine and cosine transform of $2e^{-5x}+5e^{-2x}$.										
7.	a) b)	Find the fourier transform of $e^{- x }$	7M 7M									
	5)	OR										
8.		Find the finite Fourier sine and cosine transform of $f(x) = x$ where $0 < x < 4$	14M									
		UNIT-V										
9.	a)	Form the partial differential equation by eliminating the arbitrary functions from										
		z = f(x+at) + g(x-at)										
	b)	Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x,0) = 6 e^{-3x}$										
		OR OR	7M									
10.	a)	Solve $\frac{y^2 z}{x} p + xzq = y^2$										
		<i>x</i>	7M									
	D)	Solve $p^2 + q^2 = x + y$	7M									