Hall Ticket Number :						
• • • • • • • • • •					<u> </u>	R-17

Code: 7G121

I B.Tech. II Semester Supplementary Examinations August 2021

Data Structures

(Common to All Branches)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT–I

- 1. a) What is the use of command line arguments
 - b) Write a program using pointers to compute the sum of all elements stored in an array.

OR

- 2. a) How pointers permit inter function communication.
 - b) How do you simulate arrays using pointers? Illustrate.

UNIT-II

- 3. a) How to copy and compare structure variables? Illustrate with example.
 - b) Write and Explain syntax of the following functions: (i) fopen() (ii) fclose() (iii) fread() (iv) fwrite() (v) rewind() (vi)fprintf() (vii) fscanf() (viii) feof().

OR

- 4. a) Explain the following:i. Nested structures ii. Array of structures
 - b) Define union. List out the differences between unions and structures

UNIT-III

- 5. a) What is Data Structure? Explain in detail about different type of data structures.
 - b) Write the steps for evaluating postfix expression

OR

6. Show the stack after each operation of the following sequence that starts with the empty stack: push(a), push(b), pop, push(c), push(d), pop.

UNIT–IV

7. What is a Singly Linked List.? Explain different operations of a singly linked list with suitable examples.

OR

8. Write a C function to insert and delete a node from the front end in case of doubly linked list.

UNIT–V

9. Define and describe the terms: Tree, Binary Tree, Complete Binary Tree and Degree of a tree.

OR

10. Define Graph and describe various representations of a graph with suitable examples.

		Hall Ticket Number :]	г			
	C	Code: 7G321		J			<u>[</u>						1			R-17	
		I B.Tech. II Se			•	•							Αυ	gus	st 202	21	
			E			ic D						ts					
		Max. Marks: 70 Answer <i>any five</i> full qu	estic		-		ng or					ach	unit	† (5		ne: 3 Ha 70 Mai	
1.	a)	Illustrate how transisto	r can	hei	hael		UNI		with	neat	diad	ram					7M
1.	a) b)	Design a self-bias circ following specifications	uit u	sing	silico	n tra	nsist	or to	achi	eve a	stat	oility			f 10, v	with the	
				0-10	, ,	02-0	OF		Q _0	, 10	u – 1		~ -	00.			,
2.	a)	Explain why operatin characteristics in a go point and its effects on	od v	oltag	e an	nplifie	er? E	xplai					•				
	b)	What is thermal runa transistors.	away	in	trans				the	con	ditior	n for	the	erma	al stal	bility in	7M
3.	a)	Explain the construction	on of	JFFT	and		UNI ansfe		aracte	eristio	s wit	h ne	at di	agra	am.		8M
0.	b)	Describe the necessar												agit			6M
4.		With neat sketches exp	alain	cone	tructi	ion ai	O or bo	-	on of			:т					14M
4.			Jan	0013	ucu			Clau									14101
5.	a)	What are the features	of ide	eal ar	nplifi		UNIT										7M
	b)	What are the unique fe	eature	es of	CC a	amplif			?								7M
6.		With a neat circuit dia inversion of the input amplifier.	•		•			king o				•				•	
									_								
7.		Draw the small signal equations for voltage g	•			cuit c	ce an	T an d out	•				ectio	n ai	nd dei	rive the	14M
8.		Design a common so Rs=0.5k ,Rg=1M ,r			•			it wi		nbypa	iss re	esisto	or R	s ha	as Rd	l=15k ,	14M
9.	a) b)	Draw the VI characteri What is the working pr				el dio		nd inc								ve.	7M 7M
10.		Discuss the construction	n, wo	rking	, cha	racter	OF istics ***	and	appli	catior	ns of :	silico	n coi	ntrol	led re	ctifier.	14M

	Ha	all Ticket Number :	
	Со	de: 7GC22	
		I B.Tech. II Semester Supplementary Examinations August 2021	
		Engineering Chemistry	
		(Common to EEE & ECE)	
	Mo	Time: 3 Hours	
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT–I	
1.	a)	What is break point chlorination? State its significance.	7M
	b)	Write brief account on Priming and foaming.	7M
		OR	
2.	a)	What is hardness of water? How do you classify and express hardness?	7M
	b)	With the help of neat diagram, describe the reverse osmosis method for the desalination of	
		brackish water.	7M
-			
3.		Give reasons for the following	
		i) Pin holes on tin coated Iron are more prone to corrosion of Iron than those of Zinc coated Iron.ii) Iron corrodes faster than Aluminium though AI is above Iron in EMF series.	
		iii) Corrosion of specimen can be controlled by using impressed current	14M
		OR	
4.		Differentiate chemical and electrochemical corrosion	14M
		UNIT-III	
5.		Write a note on processing of raw rubber? Explain the draw backs of raw rubbers.	14M
		OR	
6.		Why silicones are called inorganic polymers? Discuss their synthesis. Write their applications	14M
		UNIT-IV	
7.	a)	Write a note on synthesis of petrol by Fischer Tropsch's method.	7M
	b)	What are the characteristics of a good fuel?	7M
		OR	
8.	a)	Write short note on octane number and cetane number.	7M
	b)	Compare the liquid fuels with gaseous fuels.	7M
	,		
		UNIT-V	
9.	a)	Describe the analysis of cement	7M
0.	b)	Write a note on the classification of refractories with examples.	7M
	5)	OR	
10.	a)	Write a note on the composition of Portland cement	8M
	b)	Explain the importance of refractories and their applications.	6M

		Hall Ticket Number :														
	C	Code: 7GC24													R-17	
	_	I B.Tech. II Se	eme		•	•			•				Aug	ust 2	2021	
				-			-	Nath All E								
		Max. Marks: 70		-							-				ime: 3 H	
	,	Answer any five full qu	estio	ns b	y ch	oosir		ne qu *****	Jestia	on fro	om e	ach	unit (5x14	l = 70 Ma	irks)
							UNI	T–I								
1.	a)	Trace the curve $y^2(2a)$														7M
	b)	Evaluate the double	integ	ral .	$\iint_{R} x y$	dx dy	whe	ere 'F	R'is	the	regio	on bo	ounde	d by	the lines	3
		x - axis, the line $y = 2$	x and	dy=	$=\frac{x}{4}$											
					4 <i>a</i>		OI	R								7M
2.	a)	Trace the curve $r^2 = a$	$^{2}\cos$	2"				-								7M
	b)	Evaluate $\iint r^3 dr d_{\#}$, ov	er ar	ea b	ound	betw	/een	the c	ircles	r =	$2\cos$	" an	d <i>r</i> =	4 cos,	11	7M
							UNI	T–II								
3.	a)	Find the Laplace Trans														7M
	b)	Find the Laplace Trans	form	of $\frac{S}{-}$	$\sin 3t$	$t \cos \theta$	<u>t</u>									7M
						¢	O	R								7 101
4.	a)	Find the Laplace Trans	form	\int_{t}^{t}	$\int \int $	Cosa	u dı	ı du c	lu							
				0	00											7M
	b)	Find the Laplace Trans	form	of -	Cos 2	$\frac{t-C}{t}$	$\cos 3t$	-								714
						-	UNIT									7M
5.	a)	Find the inverse transfo	orm d	of $\frac{s^2}{2}$	- 3 <i>s</i>	+4										
	,				1											7M
	b)	Find the inverse transfo	orm o	of $\frac{1}{s(s)}$	$\frac{1}{s^2 + a}$	$\overline{a^2}$).										7M
							O	R								,
6		Using Convolution The			-	• <i>I</i> ^{−1}	_		l]						
6.		Using Convolution The	oren	1, EV	aluat	e L	$\int s($	$(s^{2} +$	2 <i>s</i> +	2)∫						14M
							υΝΙΤ	-IV								
7.	a)	Find the unit vector not	rmal	to the	e sur	face	$x^{3} +$	$y^3 + 3$	xyz	x = 3 a	at the	e poir	nt (1, 2	2,-1)		7M
	b)	Prove that $div curl \overline{F} =$	0					_								7M
8.		Evaluate the line inte	aral	of ſ	(xv +	$+v^2$	OI dx+		vhere	e 'c'	is th	ie so	uare	forme	ed bv the	è
					(,	, y		it dij					10.0110			
		lines $y = \pm 1$ and $x = \pm 1$					UNI	Г—V								14M
9.		Verify Gauss Divergen	ce th	neore	m fo				$\frac{1}{j} + z^3$	$\frac{1}{k}$ ta	ken d	over	the cu	ibe bo	ounded by	/
		x = 0, x = a; y = 0, y = 0	=a;	z = 0	, <i>z</i> =	а	-	_								14M
10.		Verify Green's Theore	m for	• f [(3x-3	$8y^2$	OI dx + (6 <i>x</i> y)	dy	where	eʻc'i	is bou	inded	by regior	ı
				С			,	~ ~	.)	٠ _ `					, , ,	
		bounded by $x = 0$, $y =$	u an	u <i>X</i> +	- <i>y</i> =	1	*	**								14M

R-17	
Code: 7G523 I B.Tech. II Semester Supplementary Examinations August 2021	
Geometrical Drawing	
(Common to EEE & ECE)	
Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks ********	
UNIT–I	
Draw an epicycloid of a circle of 40mm diameter, which rolls outside on another circle of 120mm diameter for one revolution clockwise. Draw a tangent and a normal to it at a point 95mm from the centre of the directing circle.	1
OR Construct an ellipse, when the distance of the focus from the directrix is equal to 50mm and	
eccentricity is 2/3. Also draw tangent and normal to the curve at a point 40mm from the directrix.	1
A point 30mm above 'xy' line is the plane view of two points P & Q the elevation of P is 45mm above the H.P. While that of the point Q is 35mm below the H.P. Draw the projections of the points and state their positions with reference to the principal planes on the quadrant in which	
they lie.	1
OR	
A line PQ, 65mm long has its end P is on H.P and 15mm in front of the V.P .The line is inclined at 45 ^o to the H.P and parallel to V.P. Draw the projections.	1
	•
A square ABCD of 40mm side has a corner on the HP and 20mm in front of the VP. All the sides of the squares are equally inclined to the HP and parallel to the VP. Draw its projections.	1
OR	
A regular hexagonal lamina of 22mm side rests on one of its sides on HP. It is parallel to and 15mm away from the VP. Draw its projections.	1
A hexagonal pyramid, base 25mm side and axis 50mm long, has an edge of its base on the ground. Its axis is inclined at 30° to the ground and parallel to the VP. Draw its projections.	1
OR	
Draw the projections of a cone, base 45mm diameter and axis 80mm lying on the HP on one of its generators with the axis parallel to the VP.	1
UNIT-V A sphere of 50 mm diameter is resting centrally on the top surface of a square slab of 60mm x 60mm x 20mm height. Draw the isometric view.	1
OR	•
Convert the following isometric view to orthographic view as shown in Fig.1 (i) Front View (ii) Top View (iii) Right Side View	
16 10 10	

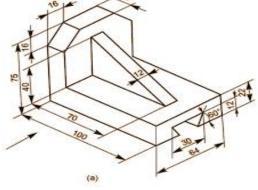


Fig.1 (All dimensions are in 'mm') ***