\square

Code: 7G321

| B.Tech. || Semester Supplementary Examinations Nov/Dec 2020

Electronic Devices and Circuits

(Common to EEE \& ECE)

Max. Marks: 70
UNIT-ITime: 3 HoursAnswer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)1. a) Name the different types of biasing circuits and give three circuit configurations.7M
b) List the three sources of instability of collector current and hence define the three stability factors. 7M
OR
2. a) Explain thermal instability. What are the factors affecting the stability factor? 6M
b) What is a load line? Discuss how the load line can be drawn on the I_{c} versus V_{CE} characteristics for a bipolar transistor amplifier.
UNIT-II3. a) Draw the VI characteristics of an N -channel JFET and explain the working of JFET.8M
b) Define Dynamic drain resistance r_{d} and amplification factor μ for a JFET. 6 M
OR4. a) Draw the two biasing circuits for an enhancement type MOSFET and explain8M
b) How do you set a Q-point in a self-biased JFET? 6M
UNIT-III
5. a) With a neat circuit diagram, explain the working of a transistor amplifier. 8M
b) Discuss the merits and limitations of common base amplifier. 6M
OR
6. Derive the expressions for input resistance, output resistance and voltage gain of an emitterfollower circuit.14M
UNIT-IV
7. a) What are the advantages of FET amplifier over BJT amplifier? 8M
b) The gain of a certain FET amplifier with a source resistance of zero is 25 . Determine the value of drain resistance, if the transconductance is $5500 \mu \mathrm{~s}$. 6MOR
8. a) If properly biased, FET will act as a voltage controlled voltage source, justify. 6M
b) A certain FET has a transconductance of $2500 \mu \mathrm{~s}$. with an external drain resistance of 2 k 8M find the value of ideal voltage gain.
UNIT-V
9. a) What are the applications of Tunnel diode? 6M
b) Write a note on LED. 8M
OR
10. a) In what respect is an LED different from an ordinary PN junction diode? State applications of LED. 8M
b) What is the working principles of schotkey diode?6M

Code: 7GC22
| B.Tech. || Semester Supplementary Examinations Nov/Dec 2020

Engineering Chemistry

(Common to EEE \& ECE)

Max. Marks: 70
Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What are boiler troubles? How are they caused? Give suggestions to minimize the troubles.
b) What is the principle of EDTA titration? Briefly describe the estimation of hardness of water by EDTA method.

OR

2. a) What is break point chlorination? State its significance.
b) Write brief account on Priming and foaming.

UNIT-II

3. a) What is meant by molar Conductance and Equivalent conductance? Write their Units?
b) Explain the composition, working and applications of $\mathrm{Ni}-\mathrm{Cd}$ cell

OR
4. a) Write a note on the mechanism of hydrogen evolution type of wet corrosion.
b) Explain rusting of iron with the help of electrochemical theory of corrosion

UNIT-III

5. Write a note on
(a) Degree of polymerization.
(b) Functionality.
(c) Tacticity of polymer

OR

6. a) Write the characteristics of co-polymerization
b) Write a note on polydispersive index

UNIT-IV

7. a) Write a note on synthesis of petrol by Fischer Tropsch's method.
b) What are the characteristics of a good fuel?

OR
8. What is the main raw material for the metallurgical coke? Describe the Otto Hoffmann's method of manufacture of metallurgical coke. How do you recover the byproducts in this method?

UNIT-V

9. a) What is the significance of flash \& fire point, cloud \& pour point of a good lubricant?
b) Write functions of lubricants

OR

10. Describe the manufacture of Portland cement by wet method with a neat labelled diagram of rotary kiln.

Code: 7GC24

| B.Tech. || Semester Supplementary Examinations Nov/Dec 2020

Engineering Mathematics-II

(Common to all Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Trace the curve $r=a(1-\cos \theta)$.
b) Evaluate the integral by changing the order of integration $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$.

OR

2. a) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing to polar coordinates.
b) Evaluate $\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-x-y} x+y+z d x d y d z$
3. a) Find the Laplace Transform of $\sin 2 t \sin 3 t$
b) Find the Laplace Transform of $\frac{\operatorname{Cos} a t-\operatorname{Cos} b t}{t}$

OR

4. a) Evaluate $\int_{0}^{\infty} e^{-2 t} \operatorname{Sin}^{3} t d t$
b) Find the Laplace Transform of the periodic function defined by the triangular wave $f(t)=\left\{\begin{array}{ll}t & ; 0 \leq t \leq 1 \\ 2-t & ; 1 \leq t \leq 2\end{array}\right.$ and $f(t+2)=f(t)$

UNIT-III

5. a) Find the inverse transform of $\frac{s+2}{s^{2}-4 s+13}$.
b) Find the inverse transform of $\frac{s^{2}-3 s+4}{s^{3}}$.

OR

6. Solve the differential equation $y^{\prime \prime}+y=t, y(0)=1, y^{\prime}(0)=2$ Using Laplace Transform

UNIT-IV

7. a) Find the angle between the surface $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$
b) Evaluate curl of $\bar{V}=e^{x y z}(\bar{i}+\bar{j}+\bar{k})$ at the point $(1,2,3)$.

OR
8. Find $\operatorname{div} \bar{F}$ and $\operatorname{curl} \bar{F}$ where $\bar{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$

UNIT-V

9. Evaluate by Green's theorem $\int_{c}\left[\left(x^{2}-\cos h y\right) d x+(y+\sin x) d y\right]$, where ' c ' is the rectangle with vertices $(0,0),(\pi, 0),(\pi, 1),(0,1)$.

OR

10. Verify stoke's theorem for a vector field $\bar{F}=y^{3} \bar{i}-x^{3} \bar{j}$ in the region $x^{2}+y^{2} \leq 1, z=0$.
\square
Code: 7G523
| B.Tech. || Semester Supplementary Examinations Nov/Dec 2020
Geometrical Drawing
(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Divide a given line of 75 mm long in to TEN equal parts
b) Construct a regular Pentagon of given side 35 mm .

OR

2. Construct a cycloid having a rolling circle diameter as 50 mm . Also draw a normal and a tangent to a curve at a point 35 mm above the base line.

UNIT-II

3. a) A point A is 25 mm above the H.P \& 35 mm in front of the V.P and 30 mm in front of P.P. Draw its (i) front view (ii) Top view (iii) Left side view.
b) A line $A B$ of 50 mm long is parallel to both H.P and V.P. The line is 40 mm above H.P and 30 mm in front of V.P. Draw the projections of the line.

OR

4. a) A line $A B, 55 \mathrm{~mm}$ long has its end A is 15 mm above H.P and 20 mm in front of the V.P. The line is inclined at 45° to the H.P. Draw the projections.
b) A line CD, 60 mm long has its end C is 10 mm above H.P and 15 mm in front of the V.P. The line is inclined at 30° to the V.P. Draw the projections.

UNIT-III

5. A Regular pentagonal plane of 30 mm side is parallel to H.P and perpendicular to V.P. The plane is 15 mm above the H.P and an edge of it lies on V.P. Draw the projections of the plane

OR

6. A Regular hexagonal plane of 25 mm side is parallel to V.P and perpendicular to H.P. The plane is 25 mm in front of V.P and an edge of it lies on H.P. Draw the projections of the plane

UNIT-IV

7. Draw the projections of a cylinder of base 30 mm diameter and axis 50 mm long, when it is resting on HP on its base.

OR

8. Draw the projections of a pentagonal prism, base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the HP , with the axis inclined at 45° to the VP.

UNIT-V

9. Draw the isometric projection of a circle of diameter 50 mm with its plane horizontal and vertical

OR
10. Draw the isometric projection of a cylinder of base diameter 30 mm and axis 70 mm long.
\squareHall Ticket Number :
R-17
Code: 7G121
| B.Tech. || Semester Supplementary Examinations Nov/Dec 2020
Data Structures(Common to all branches)
Max. Marks: 70 Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I1. a) What is a pointer? Explain in detail about pointer arithmetic.7M
b) Write a program to read and display array elements using pointers 7M
OR
2. a) What is the use of command line arguments 4M
b) Explain in detail about dynamic memory allocation functions in C 10M
UNIT-II
3. a) Define Structures. Explain with an example how structure members are initialized and accessed
b) Explain different modes to open a file 6M
OR4. a) Write a C Program to sort the given array in descending order using Bubble Sort.7M
b) Write a C program to find the given element using linear searching. 7M
UNIT-III
5. What is a stack? How it can be represented in "C" using arrays?
OR6. Write a C Program to perform the following operations on a queue
i) Insert ii) Delete 14 M
UNIT-IV
7. What is a Singly Linked List.? Explain different operations of a singly linked list with suitable examples.

OR

8. Write C functions to perform the following operations:
i. Create a circular singly linked list
ii. Display Circular singly linked list

UNIT-V

9. Define binary search tree. Explain with example deletion of an element from a binary search tree.
10. Define Graph and describe various representations of a graph with suitable examples.
