\square
| B.Tech. || Semester Supplementary Examinations April 2023
Engineering Mechanics - Dynamics
(Common to CE and ME)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A particle moves along a straight line so that its displacement in metre from a fixed point is given by, $s=t^{3}+3 t^{2}+4 t+5$. Find:
(i) Velocity at start and after 4 seconds
(ii) Acceleration at start and after 4 seconds.
b) A stone dropped into a well is heard to strike the water after 4 seconds. Find the depth of the well, if the velocity of sound is $350 \mathrm{~m} / \mathrm{sec}$.

OR

2. Motion of a particle is given by the equation $x=t^{3}-3 t^{2}-9 t+12$. Determine the time, position and acceleration of the particle when its velocity becomes zero.

UNIT-II

3. A ceiling fan when switched on attains a maximum angular speed of 1240 rpm in 10 secomds. Determine (i) the constant angular acceleration and (ii) the number of revolutions made in 10 secomds. The regulator of fan is then rotated so that its speed is reduced from 240 rpm to 18 rpm in 5 seconds. Determine the uniform retardation.

OR
4. Two points A and B located 10 cm apart on a rotating disc have velocities respectively 10 m / s and $15 \mathrm{~m} / \mathrm{s}$. Determine (i) the angular velocity of the disc, and (ii) the radial distances of points $A \& B$.

UNIT-III

5. a) Explain D' Alembert's principle.
b) A block of 100 N weight is resting on a rough horizontal table. What force p inclined at 30° to the horizontal is required to move the block horizontally with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$? The coefficient of kinetic friction between the contact surfaces is 0.2 .

OR
6. Two weights 80 N and 20 N are connected by a thread and move along a rough horizontal plane under the action of force 40 N , applied to the first weight of 80 N as shown below. The co-efficient of friction between the sliding surfaces of the weights and the plane is 0.3 . Determine the acceleration of the weights and the tension in the thread using D' Alembert's principle.

7. A jet of water impinges on a symmetrically curved vane at its center. The velocity of the jet is $60 \mathrm{~m} / \mathrm{s}$ and the diameter 120 mm . The jet is deflected through an angle of 120°. Calculate the force on the vane if the vane is fixed. Also determine the force if the vane moves with a velocity of $25 \mathrm{~m} / \mathrm{s}$ in the direction of the jet.

OR

8. A football of mass 200 gm is at rest. A player kicks the ball which moves with a velocity of $20 \mathrm{~m} / \mathrm{s}$ at an angle of 30° with respect to ground level. Find the force exerted by the player on the ball if duration of strike is 0.02 seconds.

UNIT-V

9. A right circular cylinder of weight 100 N and radius 20 cm is suspended from a cord that is wound around its circumference. If the cylinder is allowed to fall freely, find the acceleration of its mass center and the tension in the cord.

OR
10. A string is wound several times around a solid cylinder of 2 kg mass. The free end of the string is fixed to the ceiling and the cylinder is released from rest. Determine its velocity after it has fallen through a height of 2 m . also, determine the tension in string,

Code: 7GC24

| B.Tech. || Semester Supplementary Examinations April 2023

Engineering Mathematics-II

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70

UNIT-I

1. a) Trace the curve $y^{2}(2 a-x)=x^{2}$.
b) Evaluate the double integral $\iint_{R} x y d x d y$ where ' R ' is the region bounded by the lines x-axis, the line $y=2 x$ and $y=\frac{x}{4 a}$
2. a) Trace the curve $r=a(1-\cos \theta)$.
b) Evaluate the integral by changing the order of integration $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$.

UNIT-II

3. a) Find the Laplace Transform of $\sin 2 t \sin 3 t$
b) Find the Laplace Transform of $t^{2} e^{-3 t}$. 7M

OR
4. a) Evaluate $\int_{0}^{\infty} e^{-2 t} \operatorname{Sin}^{3} t d t$
b) Find the Laplace Transform of $\operatorname{Cosh}^{2} 2 t$

UNIT-III

5. Find the inverse transform of $\log \left(\frac{s+1}{s-1}\right)$.

OR
6. Solve $\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t, \quad$ if $x(0)=1, \quad x(\pi / 2)=-1$.

UNIT-IV

7. a) Show that $\operatorname{div}\left(\operatorname{grad} r^{n}\right)=n(n+1) r^{n-2}$
b) Find the unit vector normal to the surface $x^{3}+y^{3}+3 x y z=3$ at the point $(1,2,-1) \quad 7 \mathrm{M}$

OR
8. Find $\operatorname{div} \bar{F}$ and $\operatorname{curl} \bar{F}$ where $\bar{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$

UNIT-V

9. Verify divergence theorem for $\bar{F}=4 x z \bar{i}-y^{2} \bar{j}+y z \bar{k}$ taken over the cube bounded by $x=0, x=1 ; y=0, y=1 ; z=0, z=1$
10. Evaluate by Green's theorem $\int_{c}\left[\left(x^{2}-\cos h y\right) d x+(y+\sin x) d y\right]$, where ' c ' is the rectangle with vertices $(0,0),(\pi, 0),(\pi, 1),(0,1)$.
\squareHall Ticket Number :
Code: 7GC23| B.Tech. || Semester Supplementary Examinations April 2023
Engineering Physics(Common to CE, ME \& CSE)
Max. Marks: 70 Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks) *********
Marks
UNIT-I
11. a) Recite the ruby laser for production of laser 8M
b) Describe construction of optical fiber 6M
OR
12. a) Discuss the working of $\mathrm{He}-\mathrm{Ne}$ laser 8M
b) Summarize the applications of LASER 6M
UNIT-II
13. a) Illustrate the powder method to describe the structure of crystal 6M
b) What is Unit cell \& describe the Seven Crystal Systems. 8M
OR
14. Show that FCC is closely packed than SC and BCC structures 14M
UNIT-III
15. a) Find energy of an electron in second state moving in a box of width 1 nm 7M
b) Describe Fermi-Dirac distribution function 7M
OR
16. Derive Eigen energies of a particle in one dimensional potential box 14M
UNIT-IV
17. a) Explain Hall effect and write its applications 8M
b) What is photo diode explain it 6M
OR
18. a) Explain the diamagnetic nature of superconductors by Meissner's effect 8M
b) Mention the applications of superconductors 6M
UNIT-V
19. a) Define magnetic materials write any two examples 4M
b) Write the properties of dia, para and ferro magnetic materials 10M
OR
20. a) Explain Hysterisis loop of ferromagnet 6M
b) Derive magnetic moment of magnetic material through origin 8M

Hall Ticket Number :

\square

Code: 7G121

R-17

| B.Tech. || Semester Supplementary Examinations April 2023

Data Structures

(Common to All Branches)

Max. Marks: 70

Time: 3 Hours

Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

$* * * * * * * * *$

UNIT-I

1. a) What is a pointer? What are the features of pointers? Write a C program to print
address of a variable
b) Write a C program to swap two numbers using pointers.

OR

2. a) Using pointers write a C program which finds the maximum among the list of elements.
b) Explain in detail about Dynamic Memory allocation with examples

UNIT-II

3. a) Define union. List out the differences between unions and structures 7M
b) Explain different modes to open a file

7M
4. a) Describe the uses and limitations of getc and putc. 7M
b) Write a program for sorting given numbers using selection sort technique

UNIT-III

5. Write a ' C ' program for implementation of various operations on queue. 14 M

OR
6. What is a stack? How it can be represented in "C" using arrays? 14 M

UNIT-IV

7. Represent a doubly linked list using an array. Write routines to insert and delete elements for this representation.

OR

8. List the operations that can be performed on single linked list. In how many ways a node can be deleted from single linked list? Explain.

UNIT-V

9. a) Define and describe the terms: Tree, Binary Tree, Complete Binary Tree and Degree of a tree.
b) Define the following terms of graphs. i) Undirected graph ii) In degree iii) Digraph 6 M
OR
10. a) Explain the operations on Binary Tree. 7M
b) Define graph. Explain About the basic Terminology of graphs. 7M

Code: 7G521

R-17

| B.Tech. || Semester Supplementary Examinations April 2023

Engineering Graphics-II

(Common to CE \& ME)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. A Pentagonal pyramid, base 30 mm side and axis 60 mm long, is lying on one of its triangular faces on the HP with the axis parallel to the VP. A vertical section plane, whose HT bisects the top view of the axis and makes an angle of 30° with the reference line cuts the pyramid, removing its top part. Draw the top view, sectional front view, true shape of the section.
2. A cube of 35 mm long edges is resting on the HP on one of its faces with a vertical face inclined at 30° to VP. It is cut by a section plane parallel to VP and 9 mm away from the axis and further away from the VP. Draw its sectional front view and the top view.

UNIT-II

3. A cylinder of base diameter 50 mm and axis length 70 mm is resting on HP on its base. A cylindrical hole of 40 mm diameter is drilled on the surface of the cylinder. The axis of the hole intersects with the axis of the cylinder at right angles and bisects it. Draw the development of the lateral surface of the cylinder.

14M CO2 L3
OR
4. a) Draw the development of lateral surface of a cone of base diameter 48 mm and altitude 50 mm .
b) A Cylinder of 50 mm diameter and axis 75 mm is resting on its base on HP. Draw the development of lateral surface of the cylinder.

7 M CO 2 L 3

7M CO2 L3

UNIT-III

5. A vertical cone diameter of base 80 mm and axis 100 mm long is completely penetrated by a cylinder of 40 mm diameter. The axis of the cylinder is parallel to HP and the VP and intersects the axis of the cone at a point 30 mm above the base. Draw the projections of the solids showing curves of intersection.

14M CO3 L4

OR

6. A vertical square prism, base 50 mm side and axis 90 mm is completely penetrated by a horizontal square prism, base 35 mm side and axis 90 mm , so that their axes bisect. The axis of the horizontal prism is parallel to the V.P., while the faces of the two prisms are equally inclined to the V.P. Draw the projections of the solids showing lines of intersection.

14M CO3 L4

UNIT-IV

7. Draw the isometric view of a square with the side of the base 40 mm and length of axis 70 mm , when its axis is vertical and horizontal.

14 M CO4 L4
8. A hexagonal pyramid with side of base 30 mm and axis 120 mm long is resting on its base on HP. An edge of the base is parallel to VP. A horizontal section plane passing through a point to n the axis at a distance of 60 mm from the base. Draw the isometric view of the frustum of the pyramid.

UNIT-V

9. Draw the isometric view of the following figure

OR
10. Draw the isometric view of the following figure

