|    | Hal                                                    | I Ticket Number :                                                           |               |         |                     |                                                     |                           |                        |                                      |                       |                    |        |          | [                                 |         |
|----|--------------------------------------------------------|-----------------------------------------------------------------------------|---------------|---------|---------------------|-----------------------------------------------------|---------------------------|------------------------|--------------------------------------|-----------------------|--------------------|--------|----------|-----------------------------------|---------|
|    | Cor                                                    | le: 7GC24                                                                   |               |         |                     |                                                     |                           |                        |                                      | J                     |                    |        |          | R-17                              |         |
|    | 000                                                    | I B.Tech. II S                                                              | Sem           |         |                     | • •                                                 |                           |                        |                                      |                       |                    |        | s Jun    | e 2024                            |         |
|    | Engineering Mathematics-II<br>(Common to All Branches) |                                                                             |               |         |                     |                                                     |                           |                        |                                      |                       |                    |        |          |                                   |         |
|    |                                                        | ax. Marks: 70<br>wer any five full qu                                       | vestic        | ons b   | oy ch               | loosir                                              | -                         | ne q<br>*****          |                                      | on fr                 | om                 | each   | n unit ( | Time: 3 Hour<br>(5x14 = 70 Marks) |         |
|    |                                                        |                                                                             |               |         |                     |                                                     | U                         | NIT-                   | -1                                   |                       |                    |        |          |                                   |         |
| 1. | a)                                                     | Change of order o                                                           | f inte        | grati   | on a                | nd ev                                               | valua                     | te $\int_{0}^{\infty}$ | $\int_{x}^{\infty} \frac{e^{-y}}{y}$ | -dxa                  | ly                 |        |          |                                   | 7M      |
|    | b)                                                     | Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)}$               | dx dy         | v by    | char                | nging                                               | to p                      | olar                   | coord                                | dinat                 | es.                |        |          |                                   | 7M      |
|    |                                                        | 0.0                                                                         |               |         |                     |                                                     |                           | OR                     |                                      |                       |                    |        |          |                                   | 7 1 1 1 |
| 2. | a)                                                     | Trace the curve r                                                           | = a(1)        | -co     | s").                |                                                     |                           |                        |                                      |                       |                    |        |          |                                   | 7M      |
|    | b)                                                     | Evaluate $\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-x-y} \int_{0}^{1-x-y} dx$ | x + y -       | + z, dž | x dy d              | lz.                                                 |                           |                        |                                      |                       |                    |        |          |                                   | 7M      |
|    |                                                        |                                                                             |               |         |                     |                                                     | U                         | NIT-                   | I                                    |                       |                    |        |          |                                   |         |
| 3. | a)                                                     | Evaluate $\int_{0}^{\infty} t e^{-2t} C$                                    | Cos <i>ta</i> | lt      |                     |                                                     |                           |                        |                                      |                       |                    |        |          |                                   | 7M      |
|    | b)                                                     | Find the Laplace 1                                                          | Frans         | form    | of $\int_{0}^{t}$   | $\int_{0}^{t} \int_{0}^{t} \int_{0}^{t} \mathbf{C}$ | Cosa                      | ı u dı                 | ı du d                               | du                    |                    |        |          |                                   | 7M      |
|    |                                                        |                                                                             |               |         |                     |                                                     |                           | OR                     |                                      |                       |                    |        |          |                                   |         |
| 4. | a)                                                     | Find the Laplace 1                                                          | Frans         | form    | of $\frac{S}{-}$    | Sin 3 <i>t</i>                                      | $\frac{t \cos \theta}{t}$ | <u>t</u>               |                                      |                       |                    |        |          |                                   | 7M      |
|    | b)                                                     | Find the Laplace 1                                                          | Frans         | form    | of t                | $e^{-t}$ S                                          | sin t                     |                        |                                      |                       |                    |        |          |                                   | 7M      |
|    | ,                                                      |                                                                             |               |         |                     |                                                     |                           | IIT-I                  | II                                   |                       |                    |        |          |                                   |         |
| 5. | a)                                                     | Find the inverse tr                                                         | ansfo         | orm (   | of $\frac{1}{s(x)}$ | $\frac{1}{s^2 + a}$                                 | $\overline{a^2}$ ).       |                        |                                      |                       |                    |        |          |                                   | 7M      |
|    | b)                                                     | Find the inverse tr                                                         |               |         |                     |                                                     |                           |                        |                                      |                       |                    |        |          |                                   | 7M      |
|    |                                                        |                                                                             |               |         | ~                   | .5                                                  | -0                        | OR                     |                                      |                       |                    |        |          |                                   |         |
| 6. |                                                        | Find the inverse tr                                                         | ansfo         | orm d   | of lo               | $g\left(\frac{s}{s}\right)$                         | -/                        | IIT-I                  | V                                    |                       |                    |        |          |                                   | 14M     |
| 7. |                                                        | Find the direction direction of the vert                                    |               |         |                     |                                                     |                           |                        |                                      | $y^{2} + \frac{1}{2}$ | y z <sup>3</sup> a | it the | e poir   | Int $(2, -1, 1)$ in the           | ə<br>7M |

- 8. a) Prove that  $\operatorname{div}\operatorname{curl} \overline{F} = 0$  7M b) Show that  $\nabla^2 \left(\frac{1}{r}\right) = 0$  7M UNIT-V
- 9. Verify Green's Theorem for  $\int_{c} \left[ (3x 8y^2) dx + (4y 6xy) dy \right]$  where 'c' is bounded by region bounded by x = 0, y = 0 and x + y = 1OR
- 10. Verify stoke's theorem for a vector field  $\overline{F} = (x^2 + y^2)\overline{i} 2x y \overline{j}$  taken round the rectangle bounded by the lines  $x = \pm a$ , y = 0, y = b. 14M

\*\*\*

| Hall | Ficke    | et Number :                                                                                                          |
|------|----------|----------------------------------------------------------------------------------------------------------------------|
| Code | R-17     |                                                                                                                      |
| COUE |          | B.Tech. II Semester Supplementary Examinations June 2024                                                             |
|      |          | Engineering Physics                                                                                                  |
| Max  | Ma       | (Common to CE, ME and CSE)<br>Irks: 70 Time: 3 Hours                                                                 |
|      |          | ny five full questions by choosing one question from each unit (5x14 = 70 Marks )                                    |
|      |          | *********<br>UNIT–I                                                                                                  |
| 1.   | a)       | Differentiate Step-Index and Graded-Index optical fibers 9N                                                          |
|      | b)       | Distinguish Interference and Diffraction of light 5N                                                                 |
|      |          | OR                                                                                                                   |
| 2.   | a)       | Describe Newton's rings experiment for diameter of ring 9N                                                           |
|      | b)       | What is LASER and write characteristics of laser    5N                                                               |
|      |          | UNIT-II                                                                                                              |
| 3.   | a)       | Describe the production of ultrasonics by Inverse Peizo electric effect 8N                                           |
|      | b)       | Estimate the packing fractions of SC and BCC 6N                                                                      |
|      |          | OR                                                                                                                   |
| 4.   | a)       | What is space lattice and draw Bravias lattices   10N                                                                |
|      | b)       | Formulate applications of Ultrasonics 4N                                                                             |
|      |          | UNIT–III                                                                                                             |
| 5.   |          | Analyze motion of electron in periodic potential of metal 14N                                                        |
| 6    |          | OR                                                                                                                   |
| 6.   | a)<br>b) | How the solids are classified on the basis of energy band theory 7N<br>Describe Fermi-Dirac distribution function 7N |
|      | D)       | Describe Fermi-Dirac distribution function 7N                                                                        |
|      |          | UNIT–IV                                                                                                              |
| 7.   | a)       | Derive Hall voltage and justify its importance 6N                                                                    |
|      | b)       | Brief BCS theory and Flux quantization 8N<br>OR                                                                      |
| 8.   | a)       | Brief Joshepson's effect with types 6N                                                                               |
| 01   | ⊆,<br>b) | Explain the diamagnetic nature of superconductors by Meissner's effect 8N                                            |
|      | ,        |                                                                                                                      |
| 9.   | 2)       | classify the ferromagnetics by hysteresis property 7                                                                 |
| 9.   | a)<br>b) | classify the ferromagnetics by hysteresis property7NNarrate the importance of nano materials by basic principles7N   |
|      | ~)       | OR                                                                                                                   |
| 10.  | a)       | What is CNT and explain it 7N                                                                                        |
|      | b)       | Derive magnetic moment of magnetic material through origin 7N                                                        |
|      |          | ***                                                                                                                  |

|                                                            | Hal                      | I Ticket Number :                                                                                                                                           |       |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|--|--|--|--|
|                                                            | Cor                      | le: 7G121                                                                                                                                                   |       |  |  |  |  |  |  |  |  |  |  |
| I B.Tech. II Semester Supplementary Examinations June 2024 |                          |                                                                                                                                                             |       |  |  |  |  |  |  |  |  |  |  |
|                                                            | Data Structures          |                                                                                                                                                             |       |  |  |  |  |  |  |  |  |  |  |
|                                                            | (Common to All Branches) |                                                                                                                                                             |       |  |  |  |  |  |  |  |  |  |  |
|                                                            |                          | IX. Marks: 70<br>Wer any five full questions by choosing one question from each unit (5x14 = 70 Marks )                                                     |       |  |  |  |  |  |  |  |  |  |  |
|                                                            |                          | UNIT-I                                                                                                                                                      |       |  |  |  |  |  |  |  |  |  |  |
| 1.                                                         | a)                       |                                                                                                                                                             | 8M    |  |  |  |  |  |  |  |  |  |  |
|                                                            | b)                       | Write a C program to swap two numbers using pointers.                                                                                                       | 6M    |  |  |  |  |  |  |  |  |  |  |
|                                                            |                          | OR                                                                                                                                                          |       |  |  |  |  |  |  |  |  |  |  |
| 2.                                                         |                          | Compare array and pointers in terms of memory efficiency and execution time efficiency.                                                                     | 14M   |  |  |  |  |  |  |  |  |  |  |
|                                                            |                          | UNIT–II                                                                                                                                                     |       |  |  |  |  |  |  |  |  |  |  |
| 3.                                                         | a)                       | Define union. List out the differences between unions and structures                                                                                        | 7M    |  |  |  |  |  |  |  |  |  |  |
|                                                            | b)                       | Write a program for sorting given numbers using selection sort technique                                                                                    | 7M    |  |  |  |  |  |  |  |  |  |  |
| 4                                                          | - )                      | OR<br>Define Othersterne Fundais with an example have structure markers are initialized and                                                                 |       |  |  |  |  |  |  |  |  |  |  |
| 4.                                                         | a)                       | Define Structures. Explain with an example how structure members are initialized and accessed                                                               | 8M    |  |  |  |  |  |  |  |  |  |  |
|                                                            | b)                       | Write a C program to find the given element using linear searching.                                                                                         | 6M    |  |  |  |  |  |  |  |  |  |  |
| _                                                          |                          | UNIT-III                                                                                                                                                    |       |  |  |  |  |  |  |  |  |  |  |
| 5.                                                         |                          | Write a program to implement a linear queue using arrays. Take into account the exceptions like Queue Full and Queue Empty.                                 | 14M   |  |  |  |  |  |  |  |  |  |  |
| 6.                                                         | 2)                       | <b>OR</b><br>What is Data Structure? Explain in detail about different type of data structures.                                                             | 7M    |  |  |  |  |  |  |  |  |  |  |
| 0.                                                         | a)<br>b)                 | Write applications of stack                                                                                                                                 | 7M    |  |  |  |  |  |  |  |  |  |  |
|                                                            | 5)                       | UNIT-IV                                                                                                                                                     | 7 101 |  |  |  |  |  |  |  |  |  |  |
| 7.                                                         |                          | Write advantages of doubly linked list over singly linked list. Write C function that will insert a given integer value into an ordered doubly linked list. | 14M   |  |  |  |  |  |  |  |  |  |  |
|                                                            |                          | OR                                                                                                                                                          |       |  |  |  |  |  |  |  |  |  |  |
| 8.                                                         |                          | What is a Singly Linked List.? Explain different operations of a singly linked list with suitable examples.                                                 | 14M   |  |  |  |  |  |  |  |  |  |  |
|                                                            |                          | UNIT–V                                                                                                                                                      |       |  |  |  |  |  |  |  |  |  |  |
| 9.                                                         |                          | Define binary search tree. Explain with example deletion of an element from a binary search tree.                                                           | 14M   |  |  |  |  |  |  |  |  |  |  |
|                                                            |                          | OR                                                                                                                                                          |       |  |  |  |  |  |  |  |  |  |  |
| 10.                                                        |                          | Write the recursive algorithms for different binary tree traversal techniques. Find all the tree traversals for the following binary tree:                  |       |  |  |  |  |  |  |  |  |  |  |



| Hall Ticket Number :                                                                |                                                                                                                        |                |        |        |       |          |        |                     |               |         |         |        |         |                                 |     |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------|--------|--------|-------|----------|--------|---------------------|---------------|---------|---------|--------|---------|---------------------------------|-----|
| Code: 7G522                                                                         |                                                                                                                        |                |        |        |       |          |        |                     |               |         |         |        |         |                                 |     |
|                                                                                     | I                                                                                                                      | B.Tech. II S   |        |        |       | • •      |        |                     | •             |         |         |        |         | ne 2024                         |     |
|                                                                                     |                                                                                                                        |                | Eng    | ine    |       | -        |        |                     | ics -<br>Ce & | -       |         | nics   | 5       |                                 |     |
| Мах                                                                                 | . Mc                                                                                                                   | arks: 70       |        |        | (0    | Onn      |        |                     |               | /v\L )  |         |        |         | Time: 3 Ho                      | Urs |
| Answer all five units by choosing one question from each unit ( 5 x 14 = 70 Marks ) |                                                                                                                        |                |        |        |       |          |        |                     |               |         |         |        |         |                                 |     |
| UNIT–I                                                                              |                                                                                                                        |                |        |        |       |          |        |                     |               |         |         |        |         |                                 |     |
| 1.                                                                                  | <ol> <li>a) Derive the equations of rectilinear motion of a particle moving with constant<br/>acceleration.</li> </ol> |                |        |        |       |          |        |                     |               |         | 7M      |        |         |                                 |     |
|                                                                                     | b) Prove that the path traced by a projectile is Parabola.                                                             |                |        |        |       |          |        |                     |               |         | 7M      |        |         |                                 |     |
|                                                                                     |                                                                                                                        |                |        |        |       |          |        | OF                  |               |         |         |        |         |                                 |     |
| 2.                                                                                  | a)                                                                                                                     | Define norma   |        |        | 0     |          | •      |                     |               |         |         |        |         | •                               | 4M  |
|                                                                                     | b)                                                                                                                     | horizontal ra  | •      |        |       |          | lon    | το σ                | leterr        | nine    | tne     | max    | amum    | height and                      | 10M |
|                                                                                     |                                                                                                                        |                | U      | •      |       |          |        | UNI                 |               |         |         |        |         |                                 |     |
| 3.                                                                                  | a)<br>b)                                                                                                               | Explain abou   |        |        |       |          |        |                     | •             | •       | nod 4   |        | wa ha   | rizontally and                  | 7M  |
|                                                                                     | b)                                                                                                                     | •              |        |        |       |          |        |                     |               |         |         |        |         | rizontally and with constant    |     |
|                                                                                     |                                                                                                                        | •              |        |        | •     |          | -      |                     |               |         |         |        | •       | of the end B                    | 714 |
|                                                                                     |                                                                                                                        | for the instar | it whe | en th  | e axi | s of t   | ne ba  | ar ma<br><b>O</b> F |               | ne ar   | igie    | witr   | i the h | orizontal axis.                 | 7M  |
| 4.                                                                                  | a)                                                                                                                     | What is insta  | antar  | neous  | s cer | nter c   | of rot |                     |               | rigid   | bod     | y ma   | iking p | lane motion?                    |     |
|                                                                                     | L.)                                                                                                                    | Explain with   |        | •      |       | - 1      |        |                     |               |         |         |        |         |                                 | 7M  |
|                                                                                     | b)                                                                                                                     |                |        |        | •     |          |        |                     |               |         |         |        |         | ration a=0.2g.<br>iver wheel of |     |
|                                                                                     |                                                                                                                        | radius r = 1 r | n wh   | en th  | e spe | eed o    | f the  |                     |               | re is 2 | 25 km   | nph.   |         |                                 | 7M  |
| 5.                                                                                  | a)                                                                                                                     | Explain Virtu  | al wo  | ork pr | incip | le an    | d D'A  |                     |               | princ   | ciple v | with a | an exa  | mole                            | 7M  |
| 01                                                                                  | b)                                                                                                                     | •              |        | •      | •     |          |        |                     |               | •       | •       |        |         | What force p                    |     |
|                                                                                     |                                                                                                                        |                |        |        |       |          |        | •                   |               |         |         |        |         | izontally with                  |     |
|                                                                                     |                                                                                                                        | contact surfa  |        |        |       | -?       | ne c   | oem                 | cient         | Of I    | kineti  | C Tri  | CTION   | between the                     | 7M  |
|                                                                                     |                                                                                                                        |                |        |        |       |          |        | OF                  | र             |         |         |        |         |                                 |     |
| 6.                                                                                  | a)                                                                                                                     | •              |        |        |       |          |        |                     | -             |         | •       |        |         | n in Figure.2.                  |     |
|                                                                                     |                                                                                                                        |                |        |        |       |          |        | -                   | -             |         |         |        |         | cceleration 'a'<br>= 40 KN and  |     |
|                                                                                     |                                                                                                                        |                |        |        |       | <u>_</u> | 4      | 1                   | 17            |         |         |        |         |                                 |     |
|                                                                                     |                                                                                                                        |                |        |        |       |          |        |                     | þ             |         |         |        |         |                                 |     |
|                                                                                     |                                                                                                                        |                |        |        |       |          |        |                     |               |         |         |        |         |                                 |     |
| (,),                                                                                |                                                                                                                        |                |        |        |       |          |        |                     |               |         |         |        |         |                                 |     |
|                                                                                     |                                                                                                                        |                |        |        |       |          |        | I                   |               | a       |         |        |         |                                 |     |
| Р                                                                                   |                                                                                                                        |                |        |        |       |          |        |                     |               |         |         |        |         |                                 |     |

٦

Figure.2

14M

|     | b) | A locomotive of weight $W = 600$ KN goes around a curve of radius r=300m at a uniform speed of 70kmph. Determine the total lateral (outward) thrust on the rails.                                                                                | 7M    |  |  |  |  |  |
|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|
|     |    | UNIT-IV                                                                                                                                                                                                                                          | 7 101 |  |  |  |  |  |
| 7.  | a) | State and prove Work-Energy principle of rectilinear translation.                                                                                                                                                                                | 7M    |  |  |  |  |  |
|     | b) | State and prove Impulse – Momentum principle                                                                                                                                                                                                     | 7M    |  |  |  |  |  |
|     |    | OR                                                                                                                                                                                                                                               |       |  |  |  |  |  |
| 8.  | a) | Define impulsive force and non impulsive force. Give examples.                                                                                                                                                                                   | 5M    |  |  |  |  |  |
|     | b) | A locomotive weighing 60 tons has a velocity of 15 kmph and backs into a freight car weighing 10 tons that is at rest on a level train track. After the coupling is                                                                              |       |  |  |  |  |  |
|     |    | made, with what velocity 'v' will the entire system continue to move?                                                                                                                                                                            |       |  |  |  |  |  |
|     |    | UNIT–V                                                                                                                                                                                                                                           |       |  |  |  |  |  |
| 9.  | a) | Derive the equation of motion of a rigid body rotating about a fixed axis.                                                                                                                                                                       | 7M    |  |  |  |  |  |
|     | b) | A right circular cylinder of weight 100 N and radius 20 cm is suspended from a cord that is wound around its circumference. If the cylinder is allowed to fall                                                                                   |       |  |  |  |  |  |
|     |    | freely, find the acceleration of its mass center and the tension in the cord.                                                                                                                                                                    | 7M    |  |  |  |  |  |
|     |    | OR                                                                                                                                                                                                                                               |       |  |  |  |  |  |
| 10. |    | A string is wound several times around a solid cylinder of 2 kg mass. The free<br>end of the string is fixed to the ceiling and the cylinder is released from rest.<br>Determine its velocity after it has fallen through a height of 2 m. also, |       |  |  |  |  |  |

\*\*\*

determine the tension in string,