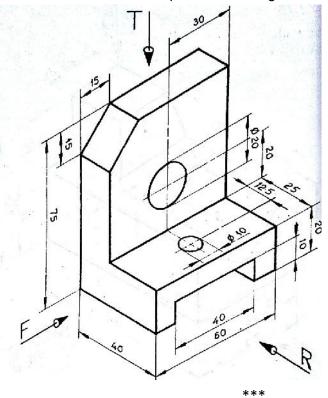

Hall Ti	icket Number :												
Code: 7											R	2-17	
	3.Tech. II Sem	En	gine	ering	Gra	phic	cs –	II	ns N	ov/[Dec 20	019	
	Marks: 70 swer all five unit	·	Comm osing o	ne que	estion ****				nit (5	5 x 14	Time = 70 M		ours
1.	A square pyramits base edges Draw its project	which is i		nd axis	•				•	•			14M
					OR								
2.	A cone of base points of base. to VP. Draw its	The axis	is inclin	ed at 3	30º to	•							14M
3.	A rectangular Plarger rectangul VP and inclined view and true s	ar face pa I at 30º to	rallel to HP bis	s 50 m VP. It ecting	is cut	by a	secti	onal	plane	e perp	endicula	ar to	14M
		•			OR								
4.	A cylinder of base. It is cut to right corner section.	oy a section	nal pla	ne incl	ined a	t 30 ⁰	to H	lP ar	nd pa	ssing	through	the	14M
5.	A cylinder of dia penetrated by a parallel to both projections sho	another of HP and \	diamet P and	nd axis ter 40 bisecti	mm a	t 80 i	xis h	eight	80 n	nm wh	ose ax	is is	14M
		Ū			OR								
6.	A cone of diam It is penetrated of cone. Draw t	by a cylind	der of d	iamete owing t	r 40 m	ım ar ersed	nd 60	mm	•				14M
7.	A draw the ison mm standing ve			of a hex its edg	agona es pa	al pris			es 40	mm	and axis	s 60	14M
Q	Draw the isome	tric viow o	of a cyclic		OR f diam	otor	40 m	ım or	nd ha	iaht 60)mm		14M
8.	aw the ISUITIE	ilio view C	ıı a cyill	iuei 0	ı uldil	CIGI	HU UH	ıııı al	iu HE	igrit Ol	лин.		1 4 1 V I

Code: 7G521

UNIT-V


9. Draw the front view, top view and left side view of the following figure.

14M

OR

10. Draw the front view, top view and right side view of the following figure.

14M

Hall Ticket Number :

Code: 7G522

R-17

I B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Engineering Mechanics - Dynamics

(Common to CE and ME)

Max. Marks: 70 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

1. A small projectile is fired vertically downward into a fluid medium with an initial velocity of 60 m/s. Due to the drag resistance of the fluid the projectile experiences a deceleration of $a = (-0.4v3) \text{ m/s}^2$, where v is in m/s. Determine the projectile's velocity and position 4 s after it is fired.

OR

2. A projectile is fired with a speed of v = 60 m/s at an angle of 60° (Fig.1). A second projectile is then fired with the same speed 0.5 s later. Determine the angle () of the second projectile so that the two projectiles collide. At what position (x, y) will this happen?

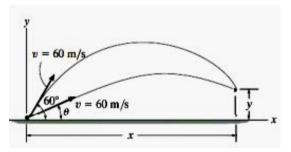
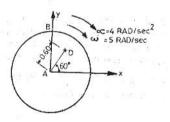



Fig.1

UNIT-II

3. A wheel of radius 1m rolls freely with an angular velocity of 5rad/s and with an angular acceleration of 4rad/s², both clockwise as shown in figure. Determine the velocity and acceleration at points B and D.

OR

4. The disk rotates about a fixed axis at O as shown in Fig.2. During the period t = 0 to t = 4 s, the angular position of the line OA in the disk varies as $(t) = t^3 - 12t + 6$ rad, where t is in seconds. Determine (1) the angular velocity and the angular acceleration of the disk at the end of the period; (2) the angular displacement of the disk during the period; and (3) the total angle turned through by the disk during the period.

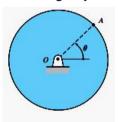


Fig.2

UNIT-III

5. Two weights 800N and 200N are connected by a thread and they move along a rough horizontal plane under the action of a force of 400N applied to the 800N weight as shown in fig. The coefficient of friction between the sliding surface of the weights and the plane is 0.3. Using D'Alembert's principle determine the acceleration of the weight and tension in the thread.

6. The 100-kg block A shown in Fig.4 is released from rest. If the masses of the pulleys and the cord are neglected, determine the speed of the 20-kg block B in 2 s.

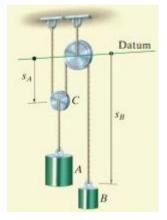


Fig.4

UNIT-IV

7. In Fig.5, If the coefficient of kinetic friction between the 100-kg crate and the plane μ_k =0.25, determine the speed of the crate at the instant the compression of the spring is x=1.5 m. Initially the spring is un-stretched and the crate is at rest.

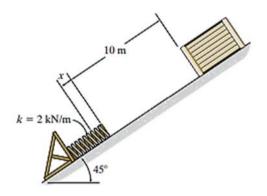


Fig.5

OR

- 8. a) Discuss impulse-momentum principle.
 - b) Explain impact of jet on plate

UNIT-V

9. The drum shown in Fig.6 has a mass of 60 kg and a radius of gyration $k_o = 0.25$ m. A cord of negligible mass is wrapped around the periphery of the drum and attached to a block having a mass of 20 kg. If the block is released, determine the drum's angular acceleration.

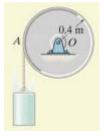


Fig.6

OR

10. Discuss equations of motion for translation motion of a rigid body.

nall	IICK	et Number : R-17								
Code		GC23								
	ΙB	3.Tech. II Semester Supplementary Examinations Nov/Dec 2019 Engineering Physics								
		Engineering Physics (Common to CE, ME and CSE)								
		Time: 3 Hours ver all five units by choosing one question from each unit ($5 \times 14 = 70 \text{ Marks}$)								
		UNIT-I								
1.	a)	Explain the construction and working of He - Ne laser								
	b)	Newton's rings are observed in the reflected light of wave length 5900 Å. The								
		diameter of 10th dark ring is 0.5 cm. Find the radius of curvature of the lens used.								
		useu. OR	6M							
2.	a)	Discuss the point to point optical fiber communication system and mention								
	,	its advantages over the conventional communication systems	8M							
	b)	The angle of acceptance of an optical fiber is 30° when kept in air. Find the								
		angle of acceptance when it is in a medium of refractive index 1.33.	6M							
		UNIT-II								
3.	a)	Derive Bragg's law for X-ray diffracton	8M							
	b)	Copper has fcc structure of atomic radius 0.1278 nm. Calculate the interplanar spacing for (3 2 1) plane.	6M							
		OR								
4.	a)	What is space lattice? Describe briefly the seven systems of crystals								
	b)	Explain the various detection methods for ultrasonics.	7M							
		UNIT-III								
5.	a)	Setup time-independent Schrodinger wave equation in one dimension and explain Eigen function and Eigen values	7M							
	b)	Define Fermi energy and Fermi factor. Discuss the probability of occupation								
		of electrons when E <e<sub>f and E>E_f.</e<sub>	7M							
•	-\	OR What is were function? Cive its physical significance, and properties	8M							
6.	a) b)	What is wave function? Give its physical significance and properties Find the relaxation time of conduction electrons in a metal of resistivity								
	D)	1.54x10 ⁻⁸ ohm-m, if the metal has 5.8 x 10^{28} conduction electrons per m ³ .								
		UNIT-IV	6M							
7.	a)	Describe with suitable diagrams the construction and action of a P-N								
, .	,	junction diode	8M							
	b)	Give a brief account of high temperature superconductivity	6M							
		OR								
8.	a)	Describe in short the formation of energy bands in solids and hence explain how it helps to classify materials into conductors and insulators 8								
	b)	The Hall co-efficient of a material is $-3.68 \times 10^{-5} \mathrm{m}^3/\mathrm{C}$. What is the type of								
		charge carriers? Also calculate the carrier concentration.	6M							
		UNIT-V								
9.	a)	Explain magnetic hysteresis on the basis of domain theory	7M							
	b)	Explain in detail any two applications of nanotechnology	7M							

b) Explain the synthesis of nanomaterials using sol-gel method

10. a) Discuss the applications of hard and soft magnets

OR

7M

7M

Hall Ticket Number :

Code: 7G121

I B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Data Structures

(Common to All Branches)

Max. Marks: 70 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

1. a) What is a pointer? List out the advantages and disadvantages using a pointer. 7M

b) Distinguish between call by value and call by reference by means of a program.

OR

2. a) What is Dynamic Memory Allocation? Write syntax for malloc(), calloc() and free(). 7M

b) Discuss command line arguments with an example.

7M

7M

R-17

UNIT-II

3. a) Distinguish between Structure and Union and also mention their applications. 4M

b) Explain Quick sort with the help of an example

10M

OR

4. a) Briefly explain File handling in C

10M

b) Compare Linear search and Binary search.

4M

UNIT-III

5. a) What is stack? Specify any four applications where stacks are extensively used. 4M

ecion:

 b) Write a routine to convert the following infix expression in to postfix expression: a+b*c/(e+f*g)

OR

6. a) What is Queue? Specify any four applications where queues are extensively used. 4M

b) Write a routine to implement circular queue.

10M

7M

10M

UNIT-IV

7. a) What is the difference between singly, doubly & circular linked lists?

b) Write a program to delete a node from the beginning of the linked list

7M

OR

8. a) Write a program to create a singly linked list in sorted order.

7M

b) Summarize doubly linked list.

7M

UNIT-V

9. a) Explain Array representation of Binary tree


7M

b) Define Graph and explain various graph representations.

7M

OR

10. Write the in order, preorder, and post order sequence of nodes for the following binary tree

14M

Hall	Ticket Number :	
Code:	7GC24	R-17
	I B.Tech. II Semester Supplementary Examinations N	ov/Dec 2019
	Engineering Mathematics-II	
	(Common to All Branches) Marks: 70 nswer all five units by choosing one question from each unit (Time: 3 Hours 5 x 14 = 70 Marks)
	******	,
	UNIT-I	
1.	Change the order of integration and evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dx dy$	14N
	OR	111
2. 8	a) Evaluate $\int_{3}^{4} \int_{1}^{2} \frac{e^{xdy}}{(x+y)^{2}}$	
		7N
k	b) Evaluate $\int_{0}^{3^{+}} \int_{1}^{2} \frac{dxdy}{(x+y)^{2}}$ $\int_{0}^{x} \int_{0}^{x} \int_{0}^{x+y} (x+y+z) dz dy dx.$ $ \mathbf{MIT}_{-} $	7M
3. a	a) Find the Laplace transform of	7N
k	Evaluate $\int_{0}^{a_{0}} \frac{a_{0} a_{0}}{a_{0}} \frac{a_{0} a_{0}}{a_{0}} \frac{a_{0} a_{0}}{a_{0}} \frac{a_{0} a_{0}}{a_{0}} \frac{a_{0} a_{0}}{a_{0}} \frac{a_{0} a_{0}}{a_{0}} $ Laplace transforms	7N
	OR	
4	Express (x^2, y^2) interms of heavisides	unit step function
4.	$f(t) = \begin{cases} 4 & t < 2 \\ 4 & t > 2 \end{cases}$	•
	hence find its Laplace transform. UNIT-III	14N
5.	Use convolution theorem to evaluate $\frac{\sqrt{1-\frac{1}{1-s^2+a^2+2}}}{L^{-1}\left[-\frac{s^2+a^2+2}{1-s^2+a^2+2}\right]}$	14N
	OR	
6.	Solve the differential equation $y'' + y = e^{-2t} Sin t, y(0)$, ,((2) = 0
		0 = 0 yr(0)
_	UNIT-IV	
7. 6	a) Show that $F = (e^x \cos y + yz)i + (xz - e^x \sin y)j + (xy + z)k$ is	conservative over
	its natural domain and find potential function for it.	7N
	b) Fs nather point (2,1,-4). Fs nather point (3,1,-4). Fs nather point (3,1,-4).	7M
	OR	710
8.	Fin vork done a particle in a force field the total vertex $z=t^2+1, y=2t^2, z=t^3$ from $t=10x^2$	7M = $3xyi - 5zj + 14M$ 14N
9.	Verify Stokes theorem for the function $\frac{2t^2, z}{ \mathbf{T} - \mathbf{V} ^2} = t^3$ from $t = 1$ square in the plane $t = 1$, whose sides are along the lines $t = 1$	=1 to ed round the
	OR	0, y=0, x=a, y=a.
10.	Verify Green's theorem for $\int_{C}^{ides \text{ are alc}} dx$ the line =	0, y=0, x=a, y=a.
	plane triangle enclosed by the lines $y=0$, $x=\frac{\pi}{2}$ and $y=\pi x$.	14N