	Hall Ticket Number :	
	Code: 7G121	7
	I B.Tech. II Semester Supplementary Examinations Nov/Dec 2020 Data Structures (Common to all branches)	
	Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks ********	
	UNIT–I	
1.	,	7M
	 b) Write a program to read and display array elements using pointers OR 	7M
2.		4M
	b) Explain in detail about dynamic memory allocation functions in C.	10M
	UNIT–II	
3.	a) Define Structures. Explain with an example how structure members are initialize accessed	d and 8M
	b) Explain different modes to open a file	6M
	OR	
4.	a) Write a C Program to sort the given array in descending order using Bubble Sort.	7M
	b) Write a C program to find the given element using linear searching.	7M
	UNIT–III	
5.		14M
	OR	
6.		4 4 1 4
	i) Insert ii) Delete	14M
	UNIT-IV	
7.		iitahla
	examples.	14M
	OR	
8.		
	i. Create a circular singly linked list	
	ii. Display Circular singly linked list	14M
	UNIT–V	
9.	Define binary search tree. Explain with example deletion of an element from a binary stree.	search 14M
	OR	
10.	Define Graph and describe various representations of a graph with suitable examples.	14M

Hall Ticket Number :												D 17
												K-1/

Code: 7G522

I B.Tech. II Semester Supplementary Examinations Nov/Dec 2020 Engineering Mechanics-Dynamics

(Common to CE & ME)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

- 1. a) A particle moves along a straight line so that its displacement in metre from a fixed point is given by, $s = t^3 + 3t^2 + 4t + 5$. Find :
 - (i) Velocity at start and after 4 seconds
 - (ii) Acceleration at start and after 4 seconds.
 - b) A stone dropped into a well is heard to strike the water after 4 seconds. Find the depth of the well, if the velocity of sound is 350 m/sec.

OR

A ball is thrown from the ground with a initial velocity of 20 m/s at an angle of 30^o to the horizontal. Determine (i) the velocity of the ball at t=1.5 s, (ii) total time of flight of the ball, (iii) Maximum height reached, (iv) range of the ball and (v) maximum range.

UNIT–II

3. A ceiling fan when switched on attains a maximum angular speed of 1240 rpm in 10secomds. Determine (i) the constant angular acceleration and (ii) the number of revolutions made in 10secomds. The regulator of fan is then rotated so that its speed is reduced from 240 rpm to 18 rpm in 5 seconds. Determine the uniform retardation.

OR

4. A flywheel rotating at 300rpm reduces its speed to 240 rpm while making 10 complete revolutions. Determine its angular retardation assuming it to be uniform what is its speed after 3 seconds assuming the same retardation? Also, determine how much time is taken to come to a rest from a speed of 300 rpm.

UNIT-III

- 5. a) Explain D' Alembert's principle.
 - b) A block of 100 N weight is resting on a rough horizontal table. What force p inclined at 30° to the horizontal is required to move the block horizontally with an acceleration of 2m/s²? The coefficient of kinetic friction between the contact surfaces is 0.2.

OR

6. Two bodies of mass 100 kg and 40 kg are connected by a thread and move along a horizontal plane under the action of a force 450 N applied to the first body of mass 100 kg as shown in figure. The coefficient of friction between the sliding surfaces of bodies and the plane is 0.3. Determine the acceleration of the two bodies and the tension in the thread using D-Alembert's principle.

UNIT–IV

7. A block weighing 100 N is moving along a horizontal rough surface of friction coefficient 0.2 with a velocity of 5 m/s. A push of 80 N inclined at 30 to the horizontal acts on the block. Using work – energy principle, find the velocity of the block after it had moved through a distance of 20 m.

OR

8. A jet of water impinges on a symmetrically curved vane at its center. The velocity of the jet is 60 m/s and the diameter 120 mm. The jet is deflected through an angle of 120°. Calculate the force on the vane if the vane is fixed. Also determine the force if the vane moves with a velocity of 25 m/s in the direction of the jet.

UNIT–V

9. A right circular cylinder of weight 100 N and radius 20 cm is suspended from a cord that is wound around its circumference. If the cylinder is allowed to fall freely, find the acceleration of its mass center and the tension in the cord.

OR

10. A flywheel of 5 kg mass and 20 cm radius of gyration is directly coupled to an electric motor, which can develop 10 kw power when rotating at a speed of 1200 rpm. Determine the irving torque to maintain this speed. If power is switched off and the flywheel comes to rest in 10 seconds, determine the uniform retarding torque on the flywheel.

	На	III Ticket Number :												[
	Co	de: 7GC24	11										1		R-17	
	I B.Tech. II Semester Supplementary Examinations Nov/Dec 2020															
	Engineering Mathematics-II (Common to all Branches)															
	Ма	ıx. Marks: 70 Answer all five uni	ts bv	cho	osino	a on	e que	estio	n fro	me	achi	unit (5 x 14		ne: 3 Ho Marks)	Urs
			,	0.10			****	*****					•	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1.	a)	Trace the curve $r =$	a(1-	- cos ,	").	U	NIT–I									7M
	b)	Evaluate the integra	u by c	han	aina	tha a	rdor (of int	oarat	ion	$\int_{1}^{1} \int_{1}^{2-x} x$	drdy				714
	0)	L'valuate the integra	li by c	παιιί	ging				eyrai		$\int_{0} \int_{x^{2}} xy$	илиу.				7M
_		$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} -(x^2+v^2)$					0									
2.	a)	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx$	dx dy	by c	hang	jing t	o pola	ar co	ordin	ates						7M
	b)	Evaluate $\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-x-y} x$	+ v +	z.dx.	dv dz											7M
			2	-	<i>,</i> ,											
3.	a)	Find the Laplace Tra	ansfo	rm o	f sin2		NIT-I I 3t									7M
	b)	Find the Laplace Tra	ansfo	rm o	f Co	s <i>at</i> -	-Cos	bt								
						1	0									7M
	,	$ \int_{0}^{\infty} e^{-2t} \mathbf{S} \cdot \mathbf{r}$	³ 4 d4													
4.	a)	Evaluate $\int_{0}^{\infty} e^{-2t} \sin^2 t$	i ai													7M
	b)	Find the Laplace $\int t \cdot 0 < 0$	Trans 7 <i>t <</i> 1	sforn	n of	the	peric	odic	funct	ion	defin	ed b	y the	triang	jular wav	e
		$f(t) = \begin{cases} t & ; 0 \le \\ 2 - t & ; 1 \le \end{cases}$	$t \leq 1$	2 an	nd f	(t+1)	2)=	f(t))							7M
							IIT–II									7 111
5.	a)	Find the inverse trai	nsforr	n of	$\frac{s}{s^2}$	+2	$\frac{1}{13}$.									7M
	b)	Find the inverse trai			2		-									714
	b)	Find the inverse trai	ISION			s ³	 0	P								7M
6.		Solve the differentia	l eau	ation	v"-	+ v =			1. v′((0) =	2 Usi	ina La	aplace	Trans	form	14M
							T_ 		, , (-)						
7.	a)	Find the angle betw	een tl	he sı	urfac	$e x^2$	$+y^{2}$ -	$+z^2 =$	=9ar	nd z	$= x^{2} -$	$+y^{2}-$	3at th	e poin	t $(2, -1, 2)$) 7M
	b)	Evaluate $curl of \overline{V}$ =	$=e^{xyz}$	$\left(\overline{i} + \right)$	$\overline{j} + \overline{k}$	z)at	the p	oint(1, 2, 3).						7M
		_	_		_		0									
8.		Find $div \overline{F}$ and $curl$	F wł	nere	<i>F</i> =				$z^3 -$	3 x y	(z)					14M
9.		Evaluate by Green's	s the	orem	n ∫[(l IT–V cos <i>h</i> y		+(y·	+ sin	x)dy], wł	nere 'c	' is the	e rectangl	е
		with vertices $(0,0)$,	(f, 0)	,(f,	,1), (0,1).										14M
10							_0		2 -				2 2			
10.		Verify stoke's theore	em fo	rav	ector	field		y³i - **	$-x^{3}j$	in t	he reç	gion <i>x</i>	$x^{2} + y^{2}$	≤1, <i>z</i> =	= 0 .	14M

	Hal	Il Ticket Number :	1
L	Coc	de: 7GC23	
		I B.Tech. II Semester Supplementary Examinations Nov/Dec 2020	-
		Engineering Physics	
		(Common to CE, ME & CSE)	
	Max	x. Marks: 70 Approximate by observing one question from each unit (5 x 14 = 70 Marks)	
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT–I	
1.	a)	Define constructive and destructive interferences	4M
1.	b)	Describe Newton's rings experiment for diameter of ring	10M
	0)	OR	10101
2.	a)	What is LASER and write characteristics of laser	6M
	b)	Recite the ruby laser for production of laser	8M
	,	UNIT-II	
3.	a)	What is Unit cell & describe the Seven Crystal Systems.	10M
	b)	Show Bragg's law as 2d Sin = n	4M
		OR	
4.	a)	What is space lattice and draw Bravias lattices	10M
	b)	Write steps to find Miller indices	4M
		UNIT–III	
5.	a)	State de-Broglie hypothesis of dual nature and derive its wavelength	8M
	b)	Define and explain Heisenberg uncertainty principle	6M
		OR	
6.	a)	Explain postulates of free electron model	6M
	b)	How the solids are classified on the basis of energy band theory	8M
_		UNIT-IV	
7.	a)	Define and explain drift and diffusion currents in semiconductors	10M
	b)	what is LED brief it	4M
0		OR Evaloin Meissner's effect and how superconductors are classified as Type 1.8 Type 2	14M
8.		Explain Meissner's effect and how superconductors are classified as Type-I & Type-2 UNIT-V	1411
9.	a)	Define magnetic materials write any two examples	4M
5.	b)	Write the properties of dia, para and ferro magnetic materials	10M
	5)	OR	10101
10.	a)	What is CNT and explain it	8M
	b)	Write the applications of nano materials	6M
